Identification of pesticide mixtures to which French agricultural workers and farm-owners are exposed: Results from the Agriculture and Cancer (AGRICAN) cohort study

被引:0
作者
Hippert, Juliette [1 ,2 ]
Talibov, Madar [1 ,2 ,3 ]
Morlais, Fabrice [1 ]
Brugioni, Maïté [4 ]
Perrier, Stéphanie [1 ,2 ,3 ]
Baldi, Isabelle [5 ,6 ]
Crépet, Amélie [7 ]
Lebailly, Pierre [1 ,2 ,3 ]
机构
[1] INSERM, UMR 1086 ANTICIPE, Caen
[2] Université de Caen Normandie, Caen
[3] Centre de Lutte Contre le Cancer François Baclesse, avenue du Général Harris, Caen Cedex 05
[4] Risk Assessment Department, Phytopharmacovigilance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex
[5] Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux
[6] CHU de Bordeaux, Pôle de Santé Publique, Service Santé Travail Environnement, Bordeaux
[7] Risk Assessment Department, Method and surveys Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, Maisons-Alfort Cedex
关键词
Clustering; Cocktail; Crop-exposure matrix PESTIMAT; Farmers; HAC; Herbicide; SNMU;
D O I
10.1016/j.scitotenv.2024.176607
中图分类号
学科分类号
摘要
Farmers, particularly in Europe, are exposed to multiple pesticides during their working life. Such exposures can cause adverse health outcomes. We aimed to identify the main pesticide mixtures to which French agricultural workers are exposed and to classify farmers into clusters based on their mixture exposure profile. The AGRICAN cohort includes farm-owners and farm workers enrolled from 2005 to 2007, with information on exact years of beginning and end of pesticide use on 11 crops and five livestock. We estimated duration of exposure to 390 pesticides identified with the PESTIMAT crop-exposure matrix for 16,905 male pesticide users from 1950 to 2009. We used a Sparse Non-negative Matrix Under-approximation to identify the main pesticide mixtures based on exposure duration, and then applied hierarchical agglomerative clustering to classify farmers sharing similar profiles of co-exposure to the mixtures. SNMU suggested 6 optimal numbers of mixtures (4, 7, 11, 15, 27, 38) explaining from 29 to 91 % of total variance. We selected 27 mixtures. Mixtures contained between four to 22 pesticides and mostly concerned the use of pesticides on wheat/barley, vineyards, corn, fruit and vegetables or on multiple crops together. We selected 11 clusters composed of 395 to 4521 farmers. Some had a higher proportion of individuals working on specific crops (as vineyard or corn), while others were characterized by the diversity of crops (cluster 8:”Permanent crops, potatoes and tobacco”). This is the first study to identify pesticide mixtures in farmers and to classify them into clusters based on their mixture exposure profiles. The next step will be to study the associations between pesticide mixtures and health outcomes such as prostate cancer in AGRICAN. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 57 条
[1]  
Agalliu I., Kriebel D., Quinn M.M., Wegman D.H., Eisen E.A., Prostate cancer incidence in relation to time windows of exposure to metalworking fluids in the auto industry, Epidemiology, 16, 5, pp. 664-671, (2005)
[2]  
AGRESTE, L'agriculture, la forêt et les Industries Agroalimentaires (Graph Agri), (2004)
[3]  
AGRESTE, Pratiques culturales en grandes cultures 2017 IFT et nombre de traitements, (2019)
[4]  
AGRESTE, Apports de produits phytopharmaceutiques en arboriculture nombre de traitements et indicateurs de fréquence de traitement comparaison 2012–2015 version actualisée, (2021)
[5]  
AGRESTE, Enquête pratiques culturales en viticulture en 2019 IFT et nombre de traitements, (2023)
[6]  
Alavanja M.C.R., Sandler D.P., McMaster S.B., Zahm S.H., McDonnell C.J., Lynch C.F., Blair A., The agricultural health study, Environ. Health Perspect., 104, 4, (1996)
[7]  
Alavanja M.C., Sandler D.P., McDonnell C.J., Lynch C.F., Pennybacker M., Zahm S.H., Mage D.T., Steen W.C., Wintersteen W., Blair A., Characteristics of pesticide use in a pesticide applicator cohort: the agricultural health study, Environ. Res., 80, 2, pp. 172-179, (1999)
[8]  
Arora S., Balotra S., Pandey G., Kumar A., Binary combinations of organophosphorus and synthetic pyrethroids are more potent acetylcholinesterase inhibitors than organophosphorus and carbamate mixtures: an in vitro assessment, Toxicol. Lett., 268, pp. 8-16, (2017)
[9]  
Axelrad J.C., Howard C.V., McLean W.G., Interactions between pesticides and components of pesticide formulations in an in vitro neurotoxicity test, Toxicology, 173, 3, pp. 259-268, (2002)
[10]  
Baldi I., The PESTIMAT Group, Carles C., Blanc-Lapierre A., Fabbro-Peray P., Druet-Cabanac M., Boutet-Robinet E., Soulat J.-M., Bouvier G., Lebailly P., A French crop-exposure matrix for use in epidemiological studies on pesticides: PESTIMAT, J. Expo. Sci. Environ. Epidemiol., 27, 1, pp. 56-63, (2017)