The use of multi-task learning in cybersecurity applications: a systematic literature review

被引:1
作者
Ibrahim, Shimaa [1 ]
Catal, Cagatay [1 ]
Kacem, Thabet [2 ]
机构
[1] Department of Computer Science and Engineering, Qatar University, 2713, Doha
[2] Department of Computer Science and Information Technology, University of the District of Columbia, Washington, 20008, DC
关键词
Cyber threats; Cybersecurity; Deep learning; Multi-task learning;
D O I
10.1007/s00521-024-10436-3
中图分类号
学科分类号
摘要
Cybersecurity is crucial in today’s interconnected world, as digital technologies are increasingly used in various sectors. The risk of cyberattacks targeting financial, military, and political systems has increased due to the wide use of technology. Cybersecurity has become vital in information technology, with data protection being a major priority. Despite government and corporate efforts, cybersecurity remains a significant concern. The application of multi-task learning (MTL) in cybersecurity is a promising solution, allowing security systems to simultaneously address various tasks and adapt in real-time to emerging threats. While researchers have applied MTL techniques for different purposes, a systematic overview of the state-of-the-art on the role of MTL in cybersecurity is lacking. Therefore, we carried out a systematic literature review (SLR) on the use of MTL in cybersecurity applications and explored its potential applications and effectiveness in developing security measures. Five critical applications, such as network intrusion detection and malware detection, were identified, and several tasks used in these applications were observed. Most of the studies used supervised learning algorithms, and there were very limited studies that focused on other types of machine learning. This paper outlines various models utilized in the context of multi-task learning within cybersecurity and presents several challenges in this field. © The Author(s) 2024.
引用
收藏
页码:22053 / 22079
页数:26
相关论文
共 50 条
  • [31] Task Variance Regularized Multi-Task Learning
    Mao, Yuren
    Wang, Zekai
    Liu, Weiwei
    Lin, Xuemin
    Hu, Wenbin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8615 - 8629
  • [32] Framework for Deep Learning-Based Language Models Using Multi-Task Learning in Natural Language Understanding: A Systematic Literature Review and Future Directions
    Samant, Rahul Manohar
    Bachute, Mrinal R.
    Gite, Shilpa
    Kotecha, Ketan
    IEEE ACCESS, 2022, 10 : 17078 - 17097
  • [33] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [34] Multi-Task Multi-Sample Learning
    Aytar, Yusuf
    Zisserman, Andrew
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 78 - 91
  • [35] Learning Tree Structure in Multi-Task Learning
    Han, Lei
    Zhang, Yu
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 397 - 406
  • [36] Enhanced task attention with adversarial learning for dynamic multi-task CNN
    Fang, Yuchun
    Xiao, Shiwei
    Zhou, Menglu
    Cai, Sirui
    Zhang, Zhaoxiang
    PATTERN RECOGNITION, 2022, 128
  • [37] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [38] Argumentation Mining Based on Multi-task Joint Learning
    Liao X.
    Ni J.
    Wei J.
    Wu Y.
    Chen G.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (12): : 1072 - 1079
  • [39] Multi-Task Federated Edge Learning (MTFeeL) With SignSGD
    Mahara, Sawan Singh
    Shruti, M.
    Bharath, B. N.
    2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 379 - 384
  • [40] Algorithm for Stereo Matching Based on Multi-Task Learning
    Wang Yufeng
    Wang Hongwei
    Liu Yu
    Yang Mingquan
    Quan Jicheng
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (04)