MGNR: A Multi-Granularity Neighbor Relationship and Its Application in KNN Classification and Clustering Methods

被引:3
|
作者
Xie, Jiang [1 ]
Xiang, Xuexin [1 ]
Xia, Shuyin [1 ]
Jiang, Lian [1 ]
Wang, Guoyin [1 ]
Gao, Xinbo [1 ]
机构
[1] Chongqing Univ Telecommun & Posts, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational modeling; Data models; Clustering methods; Machine learning; Clustering algorithms; Classification algorithms; Task analysis; Clustering; granular-ball computing; KNN; multi-granularity; neighbor relationship; ALGORITHM;
D O I
10.1109/TPAMI.2024.3400281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the real world, data distributions often exhibit multiple granularities. However, the majority of existing neighbor-based machine-learning methods rely on manually setting a single-granularity for neighbor relationships. These methods typically handle each data point using a single-granularity approach, which severely affects their accuracy and efficiency. This paper adopts a dual-pronged approach: it constructs a multi-granularity representation of the data using the granular-ball computing model, thereby boosting the algorithm's time efficiency. It leverages the multi-granularity representation of the data to create tailored, multi-granularity neighborhood relationships for different task scenarios, resulting in improved algorithmic accuracy. The experimental results convincingly demonstrate that the proposed multi-granularity neighbor relationship effectively enhances KNN classification and clustering methods.
引用
收藏
页码:7956 / 7972
页数:17
相关论文
共 50 条
  • [1] An adaptive density clustering approach with multi-granularity fusion
    Xie, Jiang
    Jiang, Lian
    Xia, Shuyin
    Xiang, Xuexin
    Wang, Guoyin
    INFORMATION FUSION, 2024, 106
  • [2] Adaptive multi-granularity sparse subspace clustering
    Deng, Tingquan
    Yang, Ge
    Huang, Yang
    Yang, Ming
    Fujita, Hamido
    INFORMATION SCIENCES, 2023, 642
  • [3] A Multi-granularity Customization Relationship Model for SaaS
    Li, Hongbo
    Shi, Yuliang
    Li, Qingzhong
    WISM: 2009 INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND MINING, PROCEEDINGS, 2009, : 611 - 615
  • [4] Hierarchical feature selection with multi-granularity clustering structure
    Guo, Shunxin
    Zhao, Hong
    Yang, Wenyuan
    INFORMATION SCIENCES, 2021, 568 : 448 - 462
  • [5] A Causal Disentangled Multi-granularity Graph Classification Method
    Li, Yuan
    Liu, Li
    Chen, Penggang
    Zhang, Youmin
    Wang, Guoyin
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 354 - 368
  • [6] A Multi-Granularity Semantic Extraction Method for Text Classification
    Li, Min
    Liu, Zeyu
    Li, Gang
    Han, Delong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 224 - 236
  • [7] Hierarchical classification with exponential weighting of multi-granularity paths
    Wang, Yibin
    Zhu, Qing
    Cheng, Yusheng
    INFORMATION SCIENCES, 2024, 675
  • [8] Multi-granularity Visualization of Trajectory Clusters using Sub-trajectory Clustering
    Chang, Cheng
    Zhou, Baoyao
    2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 577 - 582
  • [9] Clustering web documents using hierarchical representation with multi-granularity
    Huang, Faliang
    Zhang, Shichao
    He, Minghua
    Wu, Xindong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2014, 17 (01): : 105 - 126
  • [10] Clustering web documents using hierarchical representation with multi-granularity
    Faliang Huang
    Shichao Zhang
    Minghua He
    Xindong Wu
    World Wide Web, 2014, 17 : 105 - 126