Sparse Transformer-Based Sequence Generation for Visual Object Tracking

被引:0
作者
Tian, Dan [1 ]
Liu, Dong-Xin [2 ]
Wang, Xiao [2 ]
Hao, Ying [2 ]
机构
[1] Shenyang Univ, Sch Intelligent Syst Sci & Engn, Shenyang 110044, Liaoning, Peoples R China
[2] Shenyang Univ, Sch Informat Engn, Shenyang 110044, Liaoning, Peoples R China
关键词
Transformers; Visualization; Target tracking; Decoding; Feature extraction; Attention mechanisms; Object tracking; Training; Interference; Attention mechanism; sequence generation; sparse attention; visual object tracking; vision transformer;
D O I
10.1109/ACCESS.2024.3482468
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In visual object tracking, attention mechanisms can flexibly and efficiently handle complex dependencies and global information, which improves tracking accuracy. However, when dealing with scenarios that contain a large amount of background information or other complex information, its global attention ability can dilute the weight of important information, allocate unnecessary attention to background information, and thus reduce tracking performance. To relieve this problem, this paper proposes a visual object tracking framework based on a sparse transformer. Our tracking framework is a simple encoder-decoder structure that realizes the prediction of the target in an autoregressive manner, eliminating the additional head network and simplifying the tracking architecture. Furthermore, we introduce a Sparse Attention Mechanism (SMA) in the cross-attention layer of the decoder. Unlike traditional attention mechanisms, SMA focuses only on the top K pixel values that are most relevant to the current pixel when calculating attention weights. This allows the model to focus more on key information and improve foreground and background discrimination, resulting in more accurate and robust tracking. We conduct tests on six tracking benchmarks, and the experimental results prove the effectiveness of our method.
引用
收藏
页码:154418 / 154425
页数:8
相关论文
共 37 条
[21]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[22]  
Loshchilov I, 2019, Arxiv, DOI arXiv:1711.05101
[23]   TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild [J].
Mueller, Matthias ;
Bibi, Adel ;
Giancola, Silvio ;
Alsubaihi, Salman ;
Ghanem, Bernard .
COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 :310-327
[24]   A Benchmark and Simulator for UAV Tracking [J].
Mueller, Matthias ;
Smith, Neil ;
Ghanem, Bernard .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :445-461
[25]   Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression [J].
Rezatofighi, Hamid ;
Tsoi, Nathan ;
Gwak, JunYoung ;
Sadeghian, Amir ;
Reid, Ian ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :658-666
[26]   Transformer Tracking with Cyclic Shifting Window Attention [J].
Song, Zikai ;
Yu, Junqing ;
Chen, Yi-Ping Phoebe ;
Yang, Wei .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8781-8790
[27]  
Vaswani A, 2017, ADV NEUR IN, V30
[28]   Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking [J].
Wang, Ning ;
Zhou, Wengang ;
Wang, Jie ;
Li, Houqiang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1571-1580
[29]   Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark [J].
Wang, Xiao ;
Shu, Xiujun ;
Zhang, Zhipeng ;
Jiang, Bo ;
Wang, Yaowei ;
Tian, Yonghong ;
Wu, Feng .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13758-13768
[30]   Autoregressive Visual Tracking [J].
Wei, Xing ;
Bai, Yifan ;
Zheng, Yongchao ;
Shi, Dahu ;
Gong, Yihong .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :9697-9706