Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials

被引:0
|
作者
Fernández, Mauricio [1 ,2 ]
Fritzen, Felix [3 ]
Weeger, Oliver [1 ]
机构
[1] Cyber-Physical Simulation, Technical University of Darmstadt, Darmstadt, Germany
[2] Multiscale and Data-Driven Material Modeling, ACCESS e.V., Aachen, Germany
[3] Data Analytics in Engineering, University of Stuttgart, Stuttgart, Germany
来源
International Journal for Numerical Methods in Engineering | 2022年 / 123卷 / 02期
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning - Topology - Aspect ratio - Deformation - Elasticity - Anisotropy - Cytology - Neural networks - Cells - Metamaterials
引用
收藏
页码:577 / 609
相关论文
empty
未找到相关数据