Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks

被引:1
|
作者
Li, Meimei [1 ]
Zhu, Zhongzheng [2 ]
Ren, Weiwei [2 ]
Wang, Yingzheng [3 ]
机构
[1] Sun Yat Sen Univ, Sch Ecol, State Key Lab Biocontrol, Shenzhen Campus, Shenzhen 518107, Peoples R China
[2] Chinese Acad Sci, Inst Tibetan Plateau Res, Natl Tibetan Plateau Data Ctr TPDC, State Key Lab Tibetan Plateau Earth Syst Sci Envir, Beijing 100101, Peoples R China
[3] Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Tibetan Plateau; gross primary productivity; climate change; spatiotemporal variation; convolutional neural networks; MODEL; COVARIATION; ECOSYSTEM; IMPACTS;
D O I
10.3390/rs16193723
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gross primary productivity (GPP) is vital for ecosystems and the global carbon cycle, serving as a sensitive indicator of ecosystems' responses to climate change. However, the impact of future climate changes on GPP in the Tibetan Plateau, an ecologically important and climatically sensitive region, remains underexplored. This study aimed to develop a data-driven approach to predict the seasonal and annual variations in GPP in the Tibetan Plateau up to the year 2100 under changing climatic conditions. A convolutional neural network (CNN) was employed to investigate the relationships between GPP and various environmental factors, including climate variables, CO2 concentrations, and terrain attributes. This study analyzed the projected seasonal and annual GPP from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under four future scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The results suggest that the annual GPP is expected to significantly increase throughout the 21st century under all future climate scenarios. By 2100, the annual GPP is projected to reach 1011.98 Tg C, 1032.67 Tg C, 1044.35 Tg C, and 1055.50 Tg C under the four scenarios, representing changes of 0.36%, 4.02%, 5.55%, and 5.67% relative to 2021. A seasonal analysis indicates that the GPP in spring and autumn shows more pronounced growth under the SSP3-7.0 and SSP5-8.5 scenarios due to the extended growing season. Furthermore, the study identified an elevation band between 3000 and 4500 m that is particularly sensitive to climate change in terms of the GPP response. Significant GPP increases would occur in the east of the Tibetan Plateau, including the Qilian Mountains and the upper reaches of the Yellow and Yangtze Rivers. These findings highlight the pivotal role of climate change in driving future GPP dynamics in this region. These insights not only bridge existing knowledge gaps regarding the impact of future climate change on the GPP of the Tibetan Plateau over the coming decades but also provide valuable guidance for the formulation of climate adaptation strategies aimed at ecological conservation and carbon management.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Global prediction of gross primary productivity under future climate change
    Lu, Qikai
    Liu, Hui
    Wei, Lifei
    Zhong, Yanfei
    Zhou, Zheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [2] Increasing gross primary productivity under soil warming and wetting on the Tibetan Plateau
    Peng, Qing
    Jia, Binghao
    Lai, Xin
    Wang, Longhuan
    Huang, Qifeng
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (02)
  • [3] Contributions of climate change, land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau
    Luo Xin
    Jia Binghao
    Lai Xin
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2020, 13 (01) : 8 - 15
  • [4] Increased snow cover enhances gross primary productivity in cold and dry regions of the Tibetan Plateau
    Liu, Hao
    Xiao, Pengfeng
    Zhang, Xueliang
    Wu, Youlv
    ECOSPHERE, 2023, 14 (09):
  • [5] Ecological Restoration Projects Adapt Response of Net Primary Productivity of Alpine Grasslands to Climate Change across the Tibetan Plateau
    Liang, Yuling
    Zhao, Hui
    Yuan, Zhengrong
    Wei, Da
    Wang, Xiaodan
    REMOTE SENSING, 2024, 16 (23)
  • [6] Precipitation Conditions Constrain the Sensitivity of Aboveground Net Primary Productivity in Tibetan Plateau Grasslands to Climate Change
    Zeng, Na
    Ren, Xiaoli
    He, Honglin
    Zhang, Li
    Niu, Zhongen
    REMOTE SENSING, 2023, 15 (10)
  • [7] Vegetation distribution on Tibetan Plateau under climate change scenario
    Zhao, Dongsheng
    Wu, Shaohong
    Yin, Yunhe
    Yin, Zhi-Yong
    REGIONAL ENVIRONMENTAL CHANGE, 2011, 11 (04) : 905 - 915
  • [8] Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
    Xuqin Zhao
    Min Luo
    Fanhao Meng
    Chula Sa
    Shanhu Bao
    Yuhai Bao
    Journal of Arid Land, 2024, 16 : 46 - 70
  • [9] Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
    Zhao, Xuqin
    Luo, Min
    Meng, Fanhao
    Sa, Chula
    Bao, Shanhu
    Bao, Yuhai
    JOURNAL OF ARID LAND, 2024, 16 (01) : 46 - 70
  • [10] Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau
    Gao, Yanhua
    Zhou, Xu
    Wang, Qiao
    Wang, Changzuo
    Zhan, Zhiming
    Chen, Liangfu
    Yan, Junxia
    Qu, Ran
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 444 : 356 - 362