Effect of asymptomatic intervertebral flexion patterns on lumbar disc pressure: A finite element analysis study

被引:0
|
作者
Nematimoez, Mehdi [1 ]
Haddas, Ram [2 ]
Breen, Alexander [3 ]
机构
[1] Univ Bojnord, Dept Sport Biomech, Esfarayen Rd, Bojnurd 9453155111, North Khorasan, Iran
[2] Univ Rochester, Med Ctr, Dept Orthoped, Rochester, NY USA
[3] Bournemouth Univ, Fac Sci & Technol, Poole, England
关键词
disc pressure; finite element; flexion pattern; fluoroscopy; intervertebral; LOW-BACK-PAIN; TRUNK MUSCLE FORCES; RESONANCE-IMAGING FINDINGS; MOTOR CONTROL EXERCISES; ISSLS PRIZE WINNER; IN-VIVO; INTRADISCAL PRESSURE; SPINE; DEGENERATION; MOTION;
D O I
10.1002/cnm.3866
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Movement patterns may be a factor for manipulating the lumbar load, although little information is yet available in the literature about the relationship between this variable and intervertebral disc pressure (IDP). A finite element model of the lumbar spine (49-year-old asymptomatic female) was used to simulate intervertebral movements (L2-L5) of 127 asymptomatic participants. The data from participants that at least completed a simulation of lumbar vertebral movement during the first 53% of a movement cycle (flexion phase) were used for further analyses. Then, for each vertebral angular motion curve with constant spatial peaks, different temporal patterns were simulated in two stages: (1) in lumbar pattern exchange (LPE), each vertebral angle was simulated by the corresponding vertebrae of other participants data; (2) in vertebral pattern exchange (VPE), vertebral angles were simulated by each other. The k-mean algorithm was used to cluster two groups of variables; peak and cumulative IDP, in both stages of simulations (i.e., LPE and VPE). In the second stage of the simulation (VPE), Kendall's tau was utilized to consider the relationship between different temporal patterns and IDPs for each individual lumbar level. Cluster analyses showed that the temporal movement pattern did not exhibit any effect on the peak IDP while the cumulative IDP changed significantly for some patterns. Earlier involvement in lumbar motion at any level led to higher IDP in the majority of simulations. There is therefore a possibility of manipulating lumbar IDP by changing the temporal pattern with the same ROM, in which optimal distribution of the loads among lumbar levels may be applied as preventive or treatment interventions. Evaluating load benefits, such as load, on biomechanically relevant lumbar levels, dynamically measured by quantitative fluoroscopy, may help inform interventional exercises. Earlier involvement in lumbar motion at any level led to higher intervertebral disc pressure (IDP) in the majority of simulations. There is therefore a possibility of manipulating lumbar IDP by changing the temporal pattern with the same range of motion (ROM), in which optimal distribution of the loads among lumbar levels may be applied as preventive or treatment interventions. Evaluating load benefits, such as load, on biomechanically relevant lumbar levels, dynamically measured by quantitative fluoroscopy, may help inform interventional exercises. image
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The flexion-extension response of a novel lumbar intervertebral disc prosthesis: A finite element study
    Garcia Vacas, Francisco
    Ezquerro Juanco, Francisco
    Perez de la Blanca, Ana
    Prado Novoa, Maria
    Postigo Pozo, Sergio
    MECHANISM AND MACHINE THEORY, 2014, 73 : 273 - 281
  • [2] Biomechanical response of lumbar intervertebral disc in daily sitting postures: a poroelastic finite element analysis
    Zheng, Liang-dong
    Cao, Yu-ting
    Yang, Yi-ting
    Xu, Meng-lei
    Zeng, Hui-zi
    Zhu, Shi-jie
    Candito, Antonio
    Chen, Yuhang
    Zhu, Rui
    Cheng, Li-ming
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2023, 26 (16) : 1941 - 1950
  • [3] The effect of degenerative morphological changes of the intervertebral disc on the lumbar spine biomechanics: a poroelastic finite element investigation
    Galbusera, Fabio
    Schmidt, Hendrik
    Neidlinger-Wilke, Cornelia
    Wilke, Hans-Joachim
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 (08) : 729 - 739
  • [4] Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
    Coogan, Jessica S.
    Francis, W. Loren
    Eliason, Travis D.
    Bredbenner, Todd L.
    Stemper, Brian D.
    Yoganandan, Narayan
    Pintar, Frank A.
    Nicolella, Daniel P.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2016, 4
  • [5] The Effect of Nucleus Implant Parameters on the Compressive Mechanics of the Lumbar Intervertebral Disc: A Finite Element Study
    Joshi, Abhijeet
    Massey, Christopher J.
    Karduna, Andrew
    Vresilovic, Edward
    Marcolongo, Michele
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 90B (02) : 596 - 607
  • [6] Spatio-temporal clustering of lumbar intervertebral flexion interactions in 127 asymptomatic individuals
    Nematimoez, Mehdi
    Breen, Alexander
    Breen, Alan
    JOURNAL OF BIOMECHANICS, 2023, 154
  • [7] Biomechanical Effect of L4-L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study
    Cai, Xin-yi
    Sun, Meng-si
    Huang, Yun-peng
    Liu, Zi-xuan
    Liu, Chun-jie
    Du, Cheng-fei
    Yang, Qiang
    ORTHOPAEDIC SURGERY, 2020, 12 (03) : 917 - 930
  • [8] Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study
    Anitha, D. Praveen
    Baum, Thomas
    Kirschke, Jan S.
    Subburaj, Karupppasamy
    SPINE JOURNAL, 2020, 20 (04) : 665 - 671
  • [9] Finite element models of intervertebral disc: recent advances and prospects
    Sun, Tianze
    Wang, Junlin
    Liu, Xin
    Huang, Huagui
    Wang, Jinzuo
    Suo, Moran
    Zhang, Jing
    Li, Zhonghai
    ANNALS OF MEDICINE, 2025, 57 (01)
  • [10] A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties
    Casaroli, Gloria
    Galbusera, Fabio
    Jonas, Rene
    Schlager, Benedikt
    Wilke, Hans-Joachim
    Villa, Tomaso
    PLOS ONE, 2017, 12 (05):