Compressed Sensing with Frames and Sparsity in Levels Class

被引:0
|
作者
Choe, Chol-Guk [1 ]
Rim, Chol-Song [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Compressed sensing; Analysis recovery; Uniform recovery; Sparsity in levels; Frames; Structured measurements; RECOVERY;
D O I
10.1007/s10440-024-00684-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, lots of studies demonstrated that the signals are not only sparse in some system (e.g. shearlets) but also reveal a certain structure such as sparsity in levels. Therefore, sampling strategy is designed as a variable subsampling strategy in order to use this extra structure, for example magnetic resonance imaging (MRI) and etc. In this paper, we investigate the uniform recovery guarantees on the signals which possess sparsity in levels with respect to a general dual frame. First, we prove that the stable and robust recovery is possible when the weighted l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l<^>{2} $\end{document}-robust null space property in levels is satisfied. Second, we establish sufficient conditions under which subsampled isometry satisfies the weighted l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l<^>{2} $\end{document}-robust null space property in levels.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] FECG compressed sensing mode based on joint block sparsity
    Xiang, Jianhong
    Wang, Cong
    Wang, Linyu
    Zhong, Yu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [32] Exploiting joint sparsity in compressed sensing-based RFID
    Mayer, Martin
    Hannak, Gabor
    Goertz, Norbert
    EURASIP JOURNAL ON EMBEDDED SYSTEMS, 2016, Springer International Publishing (2016) : 1 - 15
  • [33] Sparsity Order Estimation for Compressed Sensing System Using Sparse Binary Sensing Matrix
    Thiruppathirajan, S.
    Narayanan, Lakshmi R.
    Sreelal, S.
    Manoj, B. S.
    IEEE ACCESS, 2022, 10 : 33370 - 33392
  • [34] COMPRESSED SENSING MRI USING DOUBLE SPARSITY WITH ADDITIONAL TRAINING IMAGES
    Tang, Chenming
    Inamuro, Norihito
    Ijiri, Takashi
    Hirabayashi, Akira
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 801 - 805
  • [35] Error bounds for compressed sensing algorithms with group sparsity: A unified approach
    Ahsen, M. Eren
    Vidyasagar, M.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (02) : 212 - 232
  • [36] SOSP: a stepwise optimal sparsity pursuit algorithm for practical compressed sensing
    Guo, Huijuan
    Han, Suqing
    Hao, Fei
    Park, Doo-Soon
    Min, Geyong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (01) : 3 - 26
  • [37] Improved sparsity adaptive matching pursuit algorithm based on compressed sensing
    Wang, Chaofan
    Zhang, Yuxin
    Sun, Liying
    Han, Jiefei
    Chao, Lianying
    Yan, Lisong
    DISPLAYS, 2023, 77
  • [38] EVALUATING SPARSITY PENALTY FUNCTIONS FOR COMBINED COMPRESSED SENSING AND PARALLEL MRI
    Weller, Daniel S.
    Polimeni, Jonathan R.
    Grady, Leo
    Wald, Lawrence L.
    Adalsteinsson, Elfar
    Goyal, Vivek K.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1589 - 1592
  • [39] Research on the Relation between the Number of Measurements and Signal Sparsity in Compressed Sensing
    Yang, Qi-Fan
    Fang, Ke
    Xie, Yong-Jun
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 178 - 182
  • [40] Compressed Sensing Photoacoustic Tomography Reduces to Compressed Sensing for Undersampled Fourier Measurements
    Alberti, Giovanni S.
    Campodonico, Paolo
    Santacesaria, Matteo
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (03): : 1039 - 1077