Compressed Sensing with Frames and Sparsity in Levels Class

被引:0
|
作者
Choe, Chol-Guk [1 ]
Rim, Chol-Song [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Compressed sensing; Analysis recovery; Uniform recovery; Sparsity in levels; Frames; Structured measurements; RECOVERY;
D O I
10.1007/s10440-024-00684-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, lots of studies demonstrated that the signals are not only sparse in some system (e.g. shearlets) but also reveal a certain structure such as sparsity in levels. Therefore, sampling strategy is designed as a variable subsampling strategy in order to use this extra structure, for example magnetic resonance imaging (MRI) and etc. In this paper, we investigate the uniform recovery guarantees on the signals which possess sparsity in levels with respect to a general dual frame. First, we prove that the stable and robust recovery is possible when the weighted l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l<^>{2} $\end{document}-robust null space property in levels is satisfied. Second, we establish sufficient conditions under which subsampled isometry satisfies the weighted l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l<^>{2} $\end{document}-robust null space property in levels.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Blind sparsity weak subspace pursuit for compressed sensing
    Tian, Wenbiao
    Rui, Guosheng
    ELECTRONICS LETTERS, 2013, 49 (05) : 369 - U86
  • [22] Compressed Sensing MRI Using Sparsity Averaging and FISTA
    Huang, Jian-ping
    Zhu, Liang-kuan
    Wang, Li-hui
    Song, Wen-long
    APPLIED MAGNETIC RESONANCE, 2017, 48 (08) : 749 - 760
  • [23] Sparsity Controlled Random Multiple Access With Compressed Sensing
    Hong, Jun-Pyo
    Choi, Wan
    Rao, Bhaskar D.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (02) : 998 - 1010
  • [24] Tight Performance Bounds for Compressed Sensing With Group Sparsity
    Ranjan, Shashank
    Vidyasagar, Mathukumalli
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 268 - 270
  • [25] Compressed Sensing MRI Using Sparsity Averaging and FISTA
    Jian-ping Huang
    Liang-kuan Zhu
    Li-hui Wang
    Wen-long Song
    Applied Magnetic Resonance, 2017, 48 : 749 - 760
  • [26] On the Role of Sparsity in Compressed Sensing and Random Matrix Theory
    Vershynin, Roman
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 189 - 192
  • [27] USE OF TIGHT FRAMES FOR OPTIMIZED COMPRESSED SENSING
    Tsiligianni, Evaggelia
    Kondi, Lisimachos P.
    Katsaggelos, Aggelos K.
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1439 - 1443
  • [28] Adaptive Compressed Sensing of Remote-sensing Imaging based on the Sparsity Prediction
    Yang Senlin
    Li Xilong
    Chong Xin
    AOPC 2017: SPACE OPTICS AND EARTH IMAGING AND SPACE NAVIGATION, 2017, 10463
  • [29] ON THE FLY ESTIMATION OF THE SPARSITY DEGREE IN COMPRESSED SENSING USING SPARSE SENSING MATRICES
    Bioglio, Valerio
    Bianchi, Tiziano
    Magli, Enrico
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3801 - 3805
  • [30] Exploiting Model Sparsity in Adaptive MPC: A Compressed Sensing Viewpoint
    Bujarbaruah, Monimoy
    Vallon, Charlott
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 137 - 146