Level-set topology optimization with PDE generated conformal meshes

被引:2
|
作者
Schmidt, Mathias R. [1 ]
Barrera, Jorge L. [1 ]
Mittal, Ketan [1 ]
Swartz, Kenneth E. [1 ]
Tortorelli, Daniel A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Computat Engn Div, 7000 East Ave, Livermore, CA 94550 USA
关键词
Topology optimization; Level-set method; Body fitted mesh; Conformal mesh; Mesh morphing; FINITE CELL METHOD; SHAPE OPTIMIZATION; SENSITIVITY;
D O I
10.1007/s00158-024-03870-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a level-set topology optimization approach that uses conformal meshes for the analysis of the displacement field. The structure's boundary is represented by the iso-contour of a level-set field discretized on a fixed background design mesh. The conformal mesh is updated for each design iteration via a PDE based mesh morphing process that identifies the set of facets in the background mesh that are homeomorphic to the boundary and relaxes the homeomorphic mesh to conform to the structure's boundary and ensure high element quality. The conformal mesh allows for a more accurate computation of the response versus density and some level-set based methods which interpolate material properties using the volume fraction. Numerical examples illustrate the proposed approach by optimizing linear-elastic two- and three-dimensional structures, wherein insight into the performance of the mesh morphing process is provided. The examples also highlight the scalability of the approach.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A parametric level-set approach for topology optimization of flow domains
    Georg Pingen
    Matthias Waidmann
    Anton Evgrafov
    Kurt Maute
    Structural and Multidisciplinary Optimization, 2010, 41 : 117 - 131
  • [32] A study on topology optimization using the level-set function and BEM
    Matsumoto, T.
    Yamada, T.
    Shichi, S.
    Takahashi, T.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXIV, 2012, 53 : 123 - 133
  • [33] Topology Optimization for Coils of Electric Machine with Level-set Method
    Ren, Xiaotao
    Thabuis, Adrien
    Belahcen, Anouar
    Perriard, Yves
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 479 - 482
  • [34] Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials
    Wang, Yu
    Gao, Jie
    Luo, Zhen
    Brown, Terry
    Zhang, Nong
    ENGINEERING OPTIMIZATION, 2017, 49 (01) : 22 - 42
  • [35] A level-set based topology optimization using the element connectivity parameterization method
    N. P. van Dijk
    G. H. Yoon
    F. van Keulen
    M. Langelaar
    Structural and Multidisciplinary Optimization, 2010, 42 : 269 - 282
  • [36] A regularization scheme for explicit level-set XFEM topology optimization
    Markus J. Geiss
    Jorge L. Barrera
    Narasimha Boddeti
    Kurt Maute
    Frontiers of Mechanical Engineering, 2019, 14 : 153 - 170
  • [37] Topology optimization of MEMS considering etching uncertainties using the level-set method
    Jang, Gang-Won
    van Dijk, Nico P.
    van Keulen, Fred
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (06) : 571 - 588
  • [38] Quasi-Newton methods for topology optimization using a level-set method
    Sebastian Blauth
    Kevin Sturm
    Structural and Multidisciplinary Optimization, 2023, 66
  • [39] Topology optimization of frequency dependent viscoelastic structures via a level-set method
    Delgado, G.
    Hamdaoui, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 522 - 541
  • [40] Introducing a level-set based shape and topology optimization method for the wear of composite materials with geometric constraints
    Feppon, F.
    Michailidis, G.
    Sidebottom, M. A.
    Allaire, G.
    Krick, B. A.
    Vermaak, N.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (02) : 547 - 568