Explainable AI for applications in production engineering

被引:0
|
作者
Kick M.K. [1 ]
Stadter C. [1 ]
Weiß T. [1 ]
Backenstos M. [2 ]
Zäh M.F. [1 ]
机构
[1] Technische Universität München, Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) TUM School of Engineering and Design, Boltzmannstr. 15, Garching bei München
[2] DatenBerg GmbH, Haid-und-Neu-Str. 7, Karlsruhe
来源
WT Werkstattstechnik | 2022年 / 112卷 / 03期
关键词
Optical tomography;
D O I
10.37544/1436-4980-2021-3-71
中图分类号
学科分类号
摘要
Optical coherence tomography allows for in-process monitoring of weld penetration depth during laser beam welding. Computed tomography scans are essential to validate the measurements. Depending on the material, and in some circumstances, a visual segmentation of the weld seam is hardly possible. Artificial neural networks, on the other hand, are able to identify the weld seam more reliably than humans. Explainability approaches make prediction transparent and allow for tracing back the causing features. © 2022, VDI Fachmedien GmBH & Co. KG. All rights reserved.
引用
收藏
页码:173 / 177
页数:4
相关论文
共 50 条
  • [21] Explainable AI
    Ute Schmid
    Britta Wrede
    KI - Künstliche Intelligenz, 2022, 36 : 207 - 210
  • [22] Explainable AI
    Matsuo T.
    Todoriki M.
    Tago S.-I.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2020, 74 (01): : 30 - 34
  • [23] Is explainable AI responsible AI?
    Taylor, Isaac
    AI & SOCIETY, 2024, 40 (3) : 1695 - 1704
  • [24] Explainable AI: Foundations, Applications, Opportunities for Data Management Research
    Pradhan, Romila
    Lahiri, Aditya
    Galhotra, Sainyam
    Salimi, Babak
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 3209 - 3212
  • [25] Explainable AI: Foundations, Applications, Opportunities for Data Management Research
    Pradhan, Romila
    Lahiri, Aditya
    Galhotra, Sainyam
    Salimi, Babak
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2452 - 2457
  • [26] When explainable AI meets IoT applications for supervised learning
    Djenouri, Youcef
    Belhadi, Asma
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (04): : 2313 - 2323
  • [27] On Quantifying Literals in Boolean Logic and Its Applications to Explainable AI
    Darwiche, Adnan
    Marquis, Pierre
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 72 : 285 - 328
  • [28] Explainable AI approaches in deep learning: Advancements, applications and challenges
    Hosain, Md. Tanzib
    Jim, Jamin Rahman
    Mridha, M. F.
    Kabir, Md Mohsin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 117
  • [29] On quantifying literals in boolean logic and its applications to explainable AI
    Darwiche A.
    Marquis P.
    Journal of Artificial Intelligence Research, 2021, 72 : 285 - 328
  • [30] Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications
    Hasan Saif, Fatima
    Al-Andoli, Mohamed Nasser
    Bejuri, Wan Mohd Yaakob Wan
    APPLIED SCIENCES-BASEL, 2024, 14 (22):