Customized Photoelectrochemical C-N and C-P Bond Formation Enabled by Tailored Deposition on Photoanodes

被引:1
作者
Wang, Jinghao [1 ,2 ]
Yang, Caoyu [1 ,2 ]
Gao, Huiwen [1 ,2 ]
Zuo, Lulu [1 ,2 ]
Guo, Zhiyu [1 ,2 ]
Yang, Pengqi [1 ,3 ]
Li, Siyang [1 ,2 ]
Tang, Zhiyong [1 ,2 ]
机构
[1] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Photoelectrocatalytic; cross-coupling; C-N bond; C-P bond; photoanode; WATER; OXIDATION; EFFICIENT; EPOXIDATION; KINETICS; GLYCEROL; ALKENES; ARENES;
D O I
10.1002/anie.202408901
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC systems suffer from limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO4 photoanodes with tailored deposition layers for customizing two PEC approaches toward C-N and C-P bond formation. Our process proceeds under mild reaction conditions, deploying easily available substrates and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications. With customized designs of the deposition layer on the BiVO4 photoanode, two PEC systems were developed for highly efficient catalytic C-N and C-P bond formation. The modified BiVO4@Al2O3 demonstrated substantial performances for important yet challenging coupling between amides and xanthenes under aerobic conditions, whereas BiVO4@Ni1Co7Pi manifested its versatility in C-P coupling between aryl bromides and diphenylphosphine oxide, facilitated by a Ni-catalyzed cycle under ultralow potentials. image
引用
收藏
页数:7
相关论文
共 63 条
  • [21] Wang J.H., Li X.B., Li J., Lei T., Wu H.L., Nan X.L., Tung C.H., Wu L.Z., Chem. Commun., 55, pp. 10376-10379, (2019)
  • [22] Li Z., Luo L., Li M., Chen W., Liu Y., Yang J., Xu S.M., Zhou H., Ma L., Xu M., Kong X., Duan H., Nat. Commun., 12, (2021)
  • [23] Wang X.D., Huang Y.H., Liao J.F., Wei Z.F., Li W.G., Xu Y.F., Chen H.Y., Kuang D.B., Nat. Commun., 12, (2021)
  • [24] Zhang J., Zhu Y., Njel C., Liu Y., Dallabernardina P., Stevens M.M., Seeberger P.H., Savateev O., Loeffler F.F., Nat. Commun., 14, (2023)
  • [25] Chae S.Y., Mehmood A., Park E.D., J. Am. Chem. Soc., 146, pp. 4314-4319, (2024)
  • [26] Liu X., Chen Z., Xu S., Liu G., Zhu Y., Yu X., Sun L., Li F., J. Am. Chem. Soc., 144, pp. 19770-19777, (2022)
  • [27] Tayebi M., Masoumi Z., Tayyebi A., Kim J.H., Lee H., Seo B., Lim C.S., Kim H.G., ACS Appl. Mater. Interfaces, 15, pp. 20053-20063, (2023)
  • [28] Tang D., Wu L., Li L., Fu N., Chen C., Zhang Y., Zhao J., Chem. Sci., 15, pp. 3018-3027, (2024)
  • [29] Yang J., Zhao Y., Duan M., Deng C., Zhang Y., Lei Y., Li J., Song W., Chen C., Zhao J., Energy Environ. Sci., 17, pp. 183-189, (2024)
  • [30] Lei Y.J.C.T., Hu H.L., Wu H.L., Zhou S., Li X.B., Chen B., Tung C.H., Wu L.Z., Matter, 4, pp. 2354-2366, (2021)