Hollow core-shell structured Fe3O4@Polypyrrole composites for enhanced electromagnetic wave absorption

被引:21
|
作者
Guo, Jiang [1 ]
Sun, Yukun [1 ]
Li, Xu [1 ]
Xi, Shaohua [1 ]
Ibrahim, Mohamed M. [2 ]
Qiu, Hua [3 ]
Mersal, Gaber A. M. [2 ]
El-Bahy, Zeinhom M. [4 ]
Murugadoss, Vignesh [5 ]
Abdul, Waras [1 ]
Zhou, Fujian [6 ]
Ren, Juanna [7 ,8 ]
Guo, Zhanhu [8 ]
Zhu, Jianfeng [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Mat & Technol Unearthed Cultural Heritage, Minist Educ, Xian 710021, Peoples R China
[2] Taif Univ, Coll Sci, Dept Chem, POB 11099, Taif 21944, Saudi Arabia
[3] Northwestern Polytech Univ, Sch Chem & Chem Engn, Shanxi Key Lab Macromol Sci & Technol, Xian 710072, Peoples R China
[4] Al Azhar Univ, Fac Sci, Chem Dept, Nasr City 11884, Cairo, Egypt
[5] CSIR Cent Glass & Ceram Res Inst, Membrane & Separat Technol Div, 196 Raja S C Mullick Rd, Kolkata 700032, India
[6] China Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
[7] Taiyuan Univ Sci & Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[8] Northumbria Univ, Dept Mech & Construction Engn, Newcastle Upon Tyne NE1 8ST, Northumberland, England
基金
中国国家自然科学基金;
关键词
Core-shell structure; HFO@PPy composites; MICROWAVE-ABSORPTION; SHIELDING COMPOSITE; FABRICATION; BAND; NANOPARTICLES; AEROGEL;
D O I
10.1016/j.compscitech.2024.110917
中图分类号
TB33 [复合材料];
学科分类号
摘要
Due to the rapid development of electronic devices, the electromagnetic pollution has become increasingly serious. Developing electromagnetic wave absorption (EWA) materials with lightweight, strong absorption capacity and wide effective absorption bandwidth (EAB) becomes a research hotspot. In this work, the hollowFe3O4@polypyrrole (HFO@PPy) composites with core-shell structure were successfully synthesized by in situ polymerization method. The electromagnetic parameters could be adjusted by controlling the content of HFO in HFO@PPy. In addition, HFO@PPy composites show both dielectric and magnetic losses. The synergistic effect of both two losses contributes to an enhanced electromagnetic attenuation. The enhanced impedance matching is achieved by the composition (HFO and PPy) and designed unique structure (core-shell and hollow structure). The maximum reflection loss (RL) and EAB are-52.01 dB and 2.72 GHz at 3.1 mm for 60.0 wt% HFO@PPy composites. Therefore, by reasonably regulating the component content and optimizing the structural design, the EWA performance of HFO@PPy composites could be effectively improved, providing a significant inspiration for fabrication of microwave absorbers.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mesoporous core-shell structure NiFe2O4@polypyrrole micro-rod with efficient electromagnetic wave absorption in C, X, Ku wavebands
    Tang, Jimin
    Wang, Kaixing
    Lu, Yingxi
    Liang, Na
    Qin, Xueliang
    Tian, Ge
    Zhang, Dong
    Feng, Shouhua
    Yue, Huijuan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 514
  • [22] Shell Thickness-Dependent Microwave Absorption of Core-Shell Fe3O4@C Composites
    Du, Yunchen
    Liu, Wenwen
    Qiang, Rong
    Wang, Ying
    Han, Xijiang
    Ma, Jun
    Xu, Ping
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) : 12997 - 13006
  • [23] Well-Defined Core-Shell Fe3O4@Polypyrrole Composite Microspheres with Tunable Shell Thickness: Synthesis and Their Superior Microwave Absorption Performance in the Ku Band
    Qiao, Mingtao
    Lei, Xingfeng
    Ma, Yong
    Tian, Lidong
    Su, Kehe
    Zhang, Qiuyu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (22) : 6263 - 6275
  • [24] Core-shell architectures: Tailoring the electromagnetic properties for enhanced absorption
    Shao, Chenyang
    Yang, Jie
    Huang, Yujia
    Xing, Yan
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [25] Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities
    Zhao, Biao
    Zhao, Wanyu
    Shao, Gang
    Fan, Bingbing
    Zhang, Rui
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12951 - 12960
  • [26] Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption
    Du, Zhilan
    Wang, Dashuang
    Zhang, Xinfang
    Yi, Zhiyu
    Tang, Jihai
    Yang, Pingan
    Cai, Rui
    Yi, Shuang
    Rao, Jinsong
    Zhang, Yuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [27] Hollow core-shell Co@SiO2@PPy composites with efficient electromagnetic wave absorption
    Tang, Peng
    Zhao, Xueying
    Du, Jiawei
    Li, Mang
    Qian, Haining
    Ren, Huiqi
    Zhang, Xuyang
    Wu, Guohua
    Wang, Xiangwei
    APPLIED SURFACE SCIENCE, 2024, 660
  • [28] Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core-shell nanocomposites
    Sun, Libo
    Zhan, Lixin
    Shi, Yuanchang
    Chu, Linya
    Ge, Guanglu
    He, Zhaopin
    SYNTHETIC METALS, 2014, 187 : 102 - 107
  • [29] Magnetic Core-Shell Fe3O4@polypyrrole@4-vinylpyridine Composites for the Removal of Multiple Dyes
    Ren, Jiajia
    Wang, Chuanjin
    Ding, Jianxu
    Li, Tingxi
    Ma, Yong
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (12): : 9449 - 9462
  • [30] Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption
    Han, Meikang
    Yin, Xiaowei
    Ren, Sa
    Duan, Wenyan
    Zhang, Litong
    Cheng, Laifei
    RSC ADVANCES, 2016, 6 (08): : 6467 - 6474