Temporal Knowledge Graph Reasoning With Dynamic Memory Enhancement

被引:0
|
作者
Zhang, Fuwei [1 ]
Zhang, Zhao [2 ]
Zhuang, Fuzhen [3 ,4 ]
Zhao, Yu [5 ]
Wang, Deqing [6 ]
Zheng, Hongwei [7 ]
机构
[1] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[4] Zhongguancun Lab, Beijing 100191, Peoples R China
[5] Southwestern Univ Finance & Econ, Inst Digital Econ & Interdisciplinary Sci Innovat, Fintech Innovat Ctr, Financial Intelligence & Financial Engn Key Lab Si, Chengdu 610074, Peoples R China
[6] Beihang Univ, Sch Comp Sci, Beijing 100191, Peoples R China
[7] Beijing Acad Blockchain & Edge Comp, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Cognition; Knowledge graphs; Task analysis; History; Convolution; Biological system modeling; Semantics; Temporal knowledge graph (TKG); memory pool; temporal knowledge graph reasoning;
D O I
10.1109/TKDE.2024.3390683
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal Knowledge Graph (TKG) reasoning involves predicting future facts based on historical information by learning correlations between entities and relations. Recently, many models have been proposed for the TKG reasoning task. However, most existing models cannot efficiently utilize historical information, which can be summarized in two aspects: 1) Many models only consider the historical information in a fixed time range, resulting in a lack of useful information; 2) some models use all the historical facts, thus some noise or invalid facts are introduced during reasoning. In this regard, we propose a novel TKG reasoning model with dynamic memory enhancement (DyMemR). Inspired by human memory, we introduce memory capacity, memory loss, and repetition stimulation to design a human-like memory pool that could remember potentially useful historical facts. To fully leverage the memory pool, we utilize a two-stage training strategy. The first stage is guided by the memory-based encoding module which learns embeddings from memory-based subgraphs generated through the memory pool. The second stage is the memory-based scoring module that emphasizes the historical facts in the memory pool. Finally, we extensively validate the superiority of DyMemR against various state-of-the-art baselines.
引用
收藏
页码:7115 / 7128
页数:14
相关论文
共 50 条
  • [1] Learning Dynamic and Static Representations for Extrapolation-Based Temporal Knowledge Graph Reasoning
    Li, Pengfei
    Zhou, Guangyou
    Xie, Zhiwen
    Xie, Penghui
    Huang, Jimmy Xiangji
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 4741 - 4754
  • [2] Temporal knowledge graph reasoning triggered by memories
    Mengnan Zhao
    Lihe Zhang
    Yuqiu Kong
    Baocai Yin
    Applied Intelligence, 2023, 53 : 28418 - 28433
  • [3] Temporal knowledge graph reasoning triggered by memories
    Zhao, Mengnan
    Zhang, Lihe
    Kong, Yuqiu
    Yin, Baocai
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28418 - 28433
  • [4] Hybrid Graph Reasoning With Dynamic Interaction for Visual Dialog
    Du, Shanshan
    Wang, Hanli
    Li, Tengpeng
    Chen, Chang Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9095 - 9108
  • [5] Dynamic Spatio-Temporal Graph Reasoning for VideoQA With Self-Supervised Event Recognition
    Nie, Jie
    Wang, Xin
    Hou, Runze
    Li, Guohao
    Chen, Hong
    Zhu, Wenwu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4145 - 4158
  • [6] HoGRN: Explainable Sparse Knowledge Graph Completion via High-Order Graph Reasoning Network
    Chen, Weijian
    Cao, Yixin
    Feng, Fuli
    He, Xiangnan
    Zhang, Yongdong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8462 - 8475
  • [7] Householder Transformation-Based Temporal Knowledge Graph Reasoning
    Zhao, Xiaojuan
    Li, Aiping
    Jiang, Rong
    Chen, Kai
    Peng, Zhichao
    ELECTRONICS, 2023, 12 (09)
  • [8] Temporal Reasoning Graph for Activity Recognition
    Zhang, Jingran
    Shen, Fumin
    Xu, Xing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5491 - 5506
  • [9] Enhancing Power Transformer Fault Diagnosis Through Dynamic Knowledge Graph Reasoning
    Wang, Xiaowen
    Han, Huihui
    Gao, Benhe
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [10] Biomedical temporal knowledge graph reasoning via contrastive adversarial learning
    Li, Wenchu
    Zhou, Huiwei
    Yao, Weihong
    Wang, Lanlan
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 43 - 48