BodyFlow: An Open-Source Library for Multimodal Human Activity Recognition

被引:0
|
作者
del-Hoyo-Alonso, Rafael [1 ]
Hernandez-Ruiz, Ana Caren [1 ]
Maranes-Nueno, Carlos [1 ]
Lopez-Bosque, Irene [1 ]
Aznar-Gimeno, Rocio [1 ]
Salvo-Ibanez, Pilar [1 ]
Perez-Lazaro, Pablo [1 ]
Abadia-Gallego, David [1 ]
Rodrigalvarez-Chamarro, Maria de la Vega [1 ]
机构
[1] Inst Tecnol Aragon ITA, Dept Big Data & Cognit Syst, Maria Luna 7-8, Zaragoza 50018, Spain
关键词
multimodal human activity recognition; human pose estimation; deep learning; sensors; HEALTH-CARE; FUSION;
D O I
10.3390/s24206729
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human activity recognition is a critical task for various applications across healthcare, sports, security, gaming, and other fields. This paper presents BodyFlow, a comprehensive library that seamlessly integrates human pose estimation and multiple-person estimation and tracking, along with activity recognition modules. BodyFlow enables users to effortlessly identify common activities and 2D/3D body joints from input sources such as videos, image sets, or webcams. Additionally, the library can simultaneously process inertial sensor data, offering users the flexibility to choose their preferred input, thus facilitating multimodal human activity recognition. BodyFlow incorporates state-of-the-art algorithms for 2D and 3D pose estimation and three distinct models for human activity recognition.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Fostering Human Activity Recognition Workflows: An Open-Source Baseline Framework
    Demrozi, Florenc
    Turetta, Cristian
    Pravadelli, Graziano
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 75 - 80
  • [2] SimHumalator: An Open-Source End-to-End Radar Simulator for Human Activity Recognition
    Vishwakarma, Shelly
    Li, Wenda
    Tang, Chong
    Woodbridge, Karl
    Adve, Raviraj
    Chetty, Kevin
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2022, 37 (03) : 6 - 22
  • [3] B-HAR: An Open-Source Baseline Framework for In-Depth Study of Human Activity Recognition Datasets and Workflows
    Turetta, Cristian
    Demrozi, Florenc
    Pravadelli, Graziano
    IEEE ACCESS, 2024, 12 : 166911 - 166922
  • [4] Open-Source Face Recognition Frameworks: A Review of the Landscape
    Wanyonyi, David
    Celik, Turgay
    IEEE ACCESS, 2022, 10 : 50601 - 50623
  • [5] PPCU Sam: Open-source face recognition framework
    Csaba, Botos
    Tamas, Hakkel
    Horvath, Andras
    Olah, Andras
    Reguly, Istvan Z.
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 1947 - 1956
  • [6] kMoL: an open-source machine and federated learning library for drug discovery
    Cozac, Romeo
    Hasic, Haris
    Choong, Jun Jin
    Richard, Vincent
    Beheshti, Loic
    Froehlich, Cyrille
    Koyama, Takuto
    Matsumoto, Shigeyuki
    Kojima, Ryosuke
    Iwata, Hiroaki
    Hasegawa, Aki
    Otsuka, Takao
    Okuno, Yasushi
    JOURNAL OF CHEMINFORMATICS, 2025, 17 (01):
  • [7] PyRAT: An Open-Source Python']Python Library for Animal Behavior Analysis
    De Almeida, Tulio Fernandes
    Spinelli, Bruno Guedes
    Lima, Ramon Hypolito
    Gonzalez, Maria Carolina
    Rodrigues, Abner Cardoso
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [8] Towards an Open-Source Dutch Speech Recognition System for the Healthcare Domain
    Tejedor-Garcia, Cristian
    van der Molen, Berrie
    van den Heuvel, Henk
    van Hessen, Arjan
    Pieters, Toine
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1032 - 1039
  • [9] OpenPointCloud: An Open-Source Algorithm Library of Deep Learning Based Point Cloud Compression
    Gao, Wei
    Ye, Hua
    Li, Ge
    Zheng, Huiming
    Wu, Yuyang
    Xie, Liang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 7347 - 7350
  • [10] Intelligent Recognition of Multimodal Human Activities for Personal Healthcare
    Sannasi Chakravarthy, S. R.
    Bharanidharan, N.
    Vinoth Kumar, V.
    Mahesh, T. R.
    Khan, Surbhi Bhatia
    Almusharraf, Ahlam
    Albalawi, Eid
    IEEE ACCESS, 2024, 12 : 79776 - 79786