Reconfigurable multi-band electromagnetically induced transparency metamaterial based on graphene

被引:3
|
作者
Meng, Rui [1 ]
Hou, Ya-Hui [2 ]
Zheng, Qi [3 ]
Liang, Jing-Jing [1 ]
Yang, Shu-Hui [1 ]
Li, Bin [1 ]
Guan, Hong-Zhou [3 ]
Fu, Zi-Hao [1 ,4 ]
Zhang, Li [1 ]
Huo, Kai-Li [1 ]
Cao, Mao-Sheng [3 ]
机构
[1] Commun Univ China, Dept Commun Engn, Beijing 100024, Peoples R China
[2] Commun Univ China, Engn Res Ctr Intelligent Broadcasting & Televis, Minist Educ, Beijing 100024, Peoples R China
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[4] Beijing Inst Elect Syst Engn, Beijing 100854, Peoples R China
关键词
Metamaterials; EIT; Terahertz; Multi-band; Graphene; TUNABLE SLOW-LIGHT; MODULATION; PLASMONICS; ANALOG; SPEED;
D O I
10.1016/j.carbon.2024.119569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By utilizing the monolayer graphene, we propose a reconfigurable multiband EIT 3D structure in the THz region, which exhibits eight consecutive transparency windows spanning from 1.16 to 2.80 THz, and the according transmission intensities were in the range of 0.75-1.0. Furthermore, with the help of graphene and VO2, the transmission curves can be modulated efficiently. The research results demonstrate that the structure proposed can generate high-intensity slow light effects at multiple frequency points within the terahertz range. Compared to existing research on EIT metamaterials, this structure offers advantages such as operation in multiple frequency bands, high transmission coefficients, and flexible modulation capabilities. Therefore, this study helps design novel tunable THz devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Active modulation of electromagnetically induced transparency analog in graphene-based microwave metamaterial
    Zhang, Jin
    Li, Zhenfei
    Shao, Linda
    Xiao, Fajun
    Zhu, Weiren
    CARBON, 2021, 183 : 850 - 857
  • [22] Polarization controllable multi-window electromagnetically induced transparency-like in a graphene metamaterial
    Lu, Junjiao
    Li, Han
    Qiu, Xuejun
    Long, Hao
    Shen, Jian
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2025, 64
  • [23] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [24] Active modulation of electromagnetically induced transparency analog in graphene-based microwave metamaterial
    Zhang, Jin
    Li, Zhenfei
    Shao, Linda
    Xiao, Fajun
    Zhu, Weiren
    Carbon, 2021, 183 : 850 - 857
  • [25] Multi-band terahertz absorber exploiting graphene metamaterial
    Zhou, Qihui
    Liu, Peiguo
    Bian, Li-An
    Cai, Xin
    Liu, Hanqing
    OPTICAL MATERIALS EXPRESS, 2018, 8 (09): : 2928 - 2940
  • [26] Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial
    He, Xunjun
    Yang, Xingyu
    Lu, Guangjun
    Yang, Wenlong
    Wu, Fengmin
    Yu, Zhigang
    Jiang, Jiuxing
    CARBON, 2017, 123 : 668 - 675
  • [27] Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial
    丁国文
    刘少斌
    章海锋
    孔祥鲲
    李海明
    李炳祥
    刘思源
    李海
    Chinese Physics B, 2015, 24 (11) : 538 - 542
  • [28] Electromagnetically induced transparency in a terahertz metamaterial
    Chiam, Sher-Yi
    Singh, Ranjan
    Rockstuhl, Carsten
    Lederer, Falk
    Zhang, Weili
    Bettiol, Andrew A.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [29] Metamaterial Analog of Electromagnetically Induced Transparency
    Papasimakis, N.
    Fedotov, V. A.
    Zheludev, N. I.
    Prosvirnin, S. L.
    PHYSICAL REVIEW LETTERS, 2008, 101 (25)
  • [30] Tunable electromagnetically induced transparency via graphene in microwave band
    Wang, Jian Wei
    Liu, Zhen Guo
    Lu, Wei Bing
    Chen, Hao
    Zhang, An Qi
    2019 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP 2019), 2019,