Reconfigurable multi-band electromagnetically induced transparency metamaterial based on graphene

被引:3
|
作者
Meng, Rui [1 ]
Hou, Ya-Hui [2 ]
Zheng, Qi [3 ]
Liang, Jing-Jing [1 ]
Yang, Shu-Hui [1 ]
Li, Bin [1 ]
Guan, Hong-Zhou [3 ]
Fu, Zi-Hao [1 ,4 ]
Zhang, Li [1 ]
Huo, Kai-Li [1 ]
Cao, Mao-Sheng [3 ]
机构
[1] Commun Univ China, Dept Commun Engn, Beijing 100024, Peoples R China
[2] Commun Univ China, Engn Res Ctr Intelligent Broadcasting & Televis, Minist Educ, Beijing 100024, Peoples R China
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[4] Beijing Inst Elect Syst Engn, Beijing 100854, Peoples R China
关键词
Metamaterials; EIT; Terahertz; Multi-band; Graphene; TUNABLE SLOW-LIGHT; MODULATION; PLASMONICS; ANALOG; SPEED;
D O I
10.1016/j.carbon.2024.119569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By utilizing the monolayer graphene, we propose a reconfigurable multiband EIT 3D structure in the THz region, which exhibits eight consecutive transparency windows spanning from 1.16 to 2.80 THz, and the according transmission intensities were in the range of 0.75-1.0. Furthermore, with the help of graphene and VO2, the transmission curves can be modulated efficiently. The research results demonstrate that the structure proposed can generate high-intensity slow light effects at multiple frequency points within the terahertz range. Compared to existing research on EIT metamaterials, this structure offers advantages such as operation in multiple frequency bands, high transmission coefficients, and flexible modulation capabilities. Therefore, this study helps design novel tunable THz devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Nonlinear Modulation of Electromagnetically Induced Transparency Based on Graphene-Metal Hybrid Metamaterial Structure
    Liu Shanshan
    Li Quan
    Yang Ziyu
    Lu Guangda
    Wang Shuang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (19):
  • [12] Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial
    Liu, Chenxi
    Liu, Peiguo
    Yang, Cheng
    Lin, Yue
    Zha, Song
    OPTICAL MATERIALS EXPRESS, 2018, 8 (05): : 1132 - 1142
  • [13] Dynamic modulation of electromagnetically induced transparency in complementary graphene metamaterial
    Wang, Ziyu
    Wang, Yinghua
    Wu, Longlong
    Wu, Qionghua
    Shao, Jian
    AIP ADVANCES, 2022, 12 (06)
  • [14] Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial
    Zhang, Huiyun
    Zhang, Xiaoqiuyan
    Cao, Yanyan
    Zeng, Beibei
    Zhou, Mingdong
    Zhang, Yuping
    MATERIALS RESEARCH EXPRESS, 2017, 4 (01):
  • [15] Single and multi-band electromagnetically induced transparency-like effects with a four-fold symmetric metamaterial design
    Bagci, Fulya
    Akaoglu, Baris
    MATERIALS RESEARCH EXPRESS, 2019, 6 (05):
  • [16] Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption
    Song, Yingming
    Deng, Xin-Hua
    Zhang, Pingsheng
    Guo, Fumin
    Qin, Kaipeng
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (07) : 4049 - 4058
  • [17] Polarization controllable multi-window electromagnetically induced transparency-like in a graphene metamaterial
    Lu, Junjiao
    Li, Han
    Qiu, Xuejun
    Long, Hao
    Shen, Jian
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2025, 64
  • [18] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [19] Tunable electromagnetically induced transparency based on terahertz graphene metamaterial
    He, Xunjun
    Huang, Yiming
    Yang, Xingyu
    Zhu, Lei
    Wu, Fengmin
    Jiang, Jiuxing
    RSC ADVANCES, 2017, 7 (64) : 40321 - 40326
  • [20] Terahertz metal-graphene hybrid metamaterial for active manipulation of electromagnetically induced transparency
    Sun, Tong
    Li, Guo-Ming
    Li, Jian-Di
    Wang, Ying-Hua
    Li, Xiao-Man
    Cao, Hong-Zhong
    Ma, Ren-De
    Xu, Shi-Tong
    Zhang, Hui -Fang
    Fan, Fei
    Chang, Sheng-Jiang
    OPTICS COMMUNICATIONS, 2024, 565