Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching

被引:2
|
作者
Zhang, Jinli [1 ]
Ren, Hongwei [1 ]
Jiang, Zongli [1 ]
Chen, Zheng [2 ]
Yang, Ziwei [3 ]
Matsubara, Yasuko [2 ]
Sakurai, Yasushi [2 ]
机构
[1] Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
[3] Kyoto Univ, Bioinformat Ctr, Kyoto 6158540, Japan
基金
日本科学技术振兴机构; 日本学术振兴会; 中国国家自然科学基金;
关键词
Multi-omics; clustering; contrastive learning; self-attention;
D O I
10.1109/TNB.2024.3456797
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [31] MODIMO: Workshop on Multi-Omics Data Integration for Modelling Biological Systems
    Beccuti, Marco
    Bonnici, Vincenzo
    Giugno, Rosalba
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4870 - 4871
  • [32] Editorial: Integration of Multi-Omics Techniques in Cancer
    Andrieux, Geoffroy
    Chakraborty, Sajib
    FRONTIERS IN GENETICS, 2021, 12
  • [33] Recent advances in omics and the integration of multi-omics in osteoarthritis research
    Liu, Ye
    Molchanov, Vladimir
    Brass, David
    Yang, Tao
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)
  • [34] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [35] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [36] Multi-omics integration analysis unveils heterogeneity in breast cancer at the individual level
    Zhao, Zhangxiang
    Jin, Tongzhu
    Chen, Bo
    Dong, Qi
    Liu, Mingyue
    Guo, Jiayu
    Song, Xiaoying
    Li, Yawei
    Chen, Tingting
    Han, Huiming
    Liang, Haihai
    Gu, Yunyan
    CELL CYCLE, 2023, 22 (20) : 2229 - 2244
  • [37] scMFG: a single-cell multi-omics integration method based on feature grouping
    Ma, Litian
    Liu, Jingtao
    Sun, Wei
    Zhao, Chenguang
    Yu, Liang
    BMC GENOMICS, 2025, 26 (01):
  • [38] DeepMoIC: multi-omics data integration via deep graph convolutional networks for cancer subtype classification
    Wu, Jiecheng
    Chen, Zhaoliang
    Xiao, Shunxin
    Liu, Genggeng
    Wu, Wenjie
    Wang, Shiping
    BMC GENOMICS, 2024, 25 (01):
  • [39] Global and cross-modal feature aggregation for multi-omics data classification and on
    Zheng, Xiao
    Wang, Minhui
    Huang, Kai
    Zhu, En
    INFORMATION FUSION, 2024, 102
  • [40] Missing data in multi-omics integration: Recent advances through artificial intelligence
    Flores, Javier E.
    Claborne, Daniel M.
    Weller, Zachary D.
    Webb-Robertson, Bobbie-Jo M.
    Waters, Katrina M.
    Bramer, Lisa M.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6