Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching

被引:2
|
作者
Zhang, Jinli [1 ]
Ren, Hongwei [1 ]
Jiang, Zongli [1 ]
Chen, Zheng [2 ]
Yang, Ziwei [3 ]
Matsubara, Yasuko [2 ]
Sakurai, Yasushi [2 ]
机构
[1] Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
[3] Kyoto Univ, Bioinformat Ctr, Kyoto 6158540, Japan
基金
日本科学技术振兴机构; 日本学术振兴会; 中国国家自然科学基金;
关键词
Multi-omics; clustering; contrastive learning; self-attention;
D O I
10.1109/TNB.2024.3456797
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [1] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [2] Dual alignment feature embedding network for multi-omics data clustering
    Xiao, Yuang
    Yang, Dong
    Li, Jiaxin
    Zou, Xin
    Zhou, Hua
    Tang, Chang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [3] Towards multi-omics synthetic data integration
    Selvarajoo, Kumar
    Maurer-Stroh, Sebastian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [4] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [5] Multi-view multi-level contrastive graph convolutional network for cancer subtyping on multi-omics data
    Yang, Bo
    Cui, Chenxi
    Wang, Meng
    Ji, Hong
    Gao, Feiyue
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [6] Stability of Feature Selection in Multi-Omics Data Analysis
    Lukaszuk, Tomasz
    Krawczuk, Jerzy
    Zyla, Kamil
    Kesik, Jacek
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [7] A deep contrastive multi-modal encoder for multi-omics data integration and analysis
    Yinghua, Ma
    Khan, Ahmad
    Heng, Yang
    Khan, Fiaz Gul
    Ali, Farman
    Al-Otaibi, Yasser D.
    Bashir, Ali Kashif
    INFORMATION SCIENCES, 2025, 700
  • [8] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17
  • [9] Prospects and challenges of multi-omics data integration in toxicology
    Sebastian Canzler
    Jana Schor
    Wibke Busch
    Kristin Schubert
    Ulrike E. Rolle-Kampczyk
    Hervé Seitz
    Hennicke Kamp
    Martin von Bergen
    Roland Buesen
    Jörg Hackermüller
    Archives of Toxicology, 2020, 94 : 371 - 388
  • [10] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14