Logical Model of Cellular Automata

被引:0
|
作者
Das, Sukanta [1 ]
Bhattacharjee, Kamalika [2 ]
Chakraborty, Mihir K. [3 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Informat Technol, Sibpur 711103, W Bengal, India
[2] Natl Inst Technol, Dept Comp Sci & Engn, Tiruchirappalli 620015, Tamil Nadu, India
[3] Jadavpur Univ, Sch Cognit Sci, Kolkata 700032, India
来源
COMPLEX SYSTEMS | 2024年 / 33卷 / 01期
关键词
cellular automata; formal logic; spatial rule; temporal rule; evolution; derivation; periodic boundary; open boundary; finite configuration; homo-asynchronism;
D O I
10.25088/ComplexSystems.33.1.87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a logic language L-CA as a model of one-dimensional d-state m-neighborhood cellular automata (CAs) with d , m >= 2. We first develop the syntax of L-CA , and then semantics are given to L-CA in the domain of all d-ary strings. It is shown that the finite CAs of any d and m are models of the proposed logic language under any boundary condition. Classical CAs, which are defined over an infinite lattice, are also shown to be models of L-CA under two popular classes of configurations: finite and periodic. The proposed logical model further guides us to develop a new class of CAs, which we name homoasynchronous CAs, where a group of (nearby) cells with homogeneous configurations can be updated independently during evolution.
引用
收藏
页码:87 / 124
页数:38
相关论文
共 50 条
  • [41] A cellular automata model for highway traffic
    E.G. Campari
    G. Levi
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 17 : 159 - 166
  • [42] A cellular automata model of micelle formation
    Kier, LB
    Cheng, CK
    Testa, B
    Carrupt, PA
    PHARMACEUTICAL RESEARCH, 1996, 13 (09) : 1419 - 1422
  • [43] Cellular automata model for gene networks
    deSales, JA
    Martins, ML
    Stariolo, DA
    PHYSICAL REVIEW E, 1997, 55 (03): : 3262 - 3270
  • [44] Cellular automata model of cardiac pacemaker
    Makowiec, Danuta
    ACTA PHYSICA POLONICA B, 2008, 39 (05): : 1067 - 1085
  • [45] CELLULAR AUTOMATA MODEL FOR THE DIFFUSION EQUATION
    CHOPARD, B
    DROZ, M
    JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (3-4) : 859 - 892
  • [46] A CELLULAR-AUTOMATA MODEL OF DISSOLUTION
    KIER, LB
    CHENG, CK
    PHARMACEUTICAL RESEARCH, 1995, 12 (10) : 1521 - 1525
  • [47] Research on an Improved Cellular Automata Model
    Wang Hong
    Liu Yu-qiu
    Zhou Li-hui
    ADVANCES IN INTELLIGENT STRUCTURE AND VIBRATION CONTROL, 2012, 160 : 109 - +
  • [48] Cellular automata model for gene networks
    Phys Rev E., 3-B (3262):
  • [49] A cellular automata model of an anticipatory system
    Kier, LB
    Cheng, CK
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2000, 18 (01): : 29 - +
  • [50] Cellular Automata as a Model of Physical Systems
    Cheung, Donny
    Perez-Delgado, Carlos A.
    JOURNAL OF CELLULAR AUTOMATA, 2010, 5 (06) : 469 - 480