Logical Model of Cellular Automata

被引:0
|
作者
Das, Sukanta [1 ]
Bhattacharjee, Kamalika [2 ]
Chakraborty, Mihir K. [3 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Informat Technol, Sibpur 711103, W Bengal, India
[2] Natl Inst Technol, Dept Comp Sci & Engn, Tiruchirappalli 620015, Tamil Nadu, India
[3] Jadavpur Univ, Sch Cognit Sci, Kolkata 700032, India
来源
COMPLEX SYSTEMS | 2024年 / 33卷 / 01期
关键词
cellular automata; formal logic; spatial rule; temporal rule; evolution; derivation; periodic boundary; open boundary; finite configuration; homo-asynchronism;
D O I
10.25088/ComplexSystems.33.1.87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a logic language L-CA as a model of one-dimensional d-state m-neighborhood cellular automata (CAs) with d , m >= 2. We first develop the syntax of L-CA , and then semantics are given to L-CA in the domain of all d-ary strings. It is shown that the finite CAs of any d and m are models of the proposed logic language under any boundary condition. Classical CAs, which are defined over an infinite lattice, are also shown to be models of L-CA under two popular classes of configurations: finite and periodic. The proposed logical model further guides us to develop a new class of CAs, which we name homoasynchronous CAs, where a group of (nearby) cells with homogeneous configurations can be updated independently during evolution.
引用
收藏
页码:87 / 124
页数:38
相关论文
共 50 条
  • [31] Cellular Automata Model for Heterogeneous Traffic
    Mallikarjuna, Ch.
    Rao, K. Ramachandra
    JOURNAL OF ADVANCED TRANSPORTATION, 2009, 43 (03) : 321 - 345
  • [32] A cellular automata model of bone formation
    Van Scoy, Gabrielle K.
    George, Estee L.
    Asantewaa, Flora Opoku
    Kerns, Lucy
    Saunders, Marnie M.
    Prieto-Langarica, Alicia
    MATHEMATICAL BIOSCIENCES, 2017, 286 : 58 - 64
  • [33] Cellular automata model of density currents
    Salles, T.
    Lopez, S.
    Cacas, M. C.
    Mulder, T.
    GEOMORPHOLOGY, 2007, 88 (1-2) : 1 - 20
  • [34] A cellular automata model of the soluble state
    Lemont B. Kier
    Chao‐Kun Cheng
    Journal of Mathematical Chemistry, 1997, 21 : 71 - 81
  • [35] Differential equation and cellular automata model
    Hu, RC
    Ruan, XG
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT SYSTEMS AND SIGNAL PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1047 - 1051
  • [36] A cellular automata model for Chagas disease
    Slimi, R.
    El Yacoubi, S.
    Dumonteil, E.
    Gourbiere, S.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (02) : 1072 - 1085
  • [37] A cellular automata model of the soluble state
    Kier, LB
    Cheng, CK
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1997, 21 (01) : 71 - 81
  • [38] A cellular automata model of the percolation process
    Kier, LB
    Cheng, CK
    Testa, B
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (02): : 326 - 332
  • [39] An evacuation model using cellular automata
    Yuan, Welfeng
    Tan, Kang Hal
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) : 549 - 566
  • [40] A CELLULAR-AUTOMATA MODEL OF WATER
    KIER, LB
    CHENG, CK
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (03): : 647 - 652