Logical Model of Cellular Automata

被引:0
作者
Das, Sukanta [1 ]
Bhattacharjee, Kamalika [2 ]
Chakraborty, Mihir K. [3 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Informat Technol, Sibpur 711103, W Bengal, India
[2] Natl Inst Technol, Dept Comp Sci & Engn, Tiruchirappalli 620015, Tamil Nadu, India
[3] Jadavpur Univ, Sch Cognit Sci, Kolkata 700032, India
来源
COMPLEX SYSTEMS | 2024年 / 33卷 / 01期
关键词
cellular automata; formal logic; spatial rule; temporal rule; evolution; derivation; periodic boundary; open boundary; finite configuration; homo-asynchronism;
D O I
10.25088/ComplexSystems.33.1.87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a logic language L-CA as a model of one-dimensional d-state m-neighborhood cellular automata (CAs) with d , m >= 2. We first develop the syntax of L-CA , and then semantics are given to L-CA in the domain of all d-ary strings. It is shown that the finite CAs of any d and m are models of the proposed logic language under any boundary condition. Classical CAs, which are defined over an infinite lattice, are also shown to be models of L-CA under two popular classes of configurations: finite and periodic. The proposed logical model further guides us to develop a new class of CAs, which we name homoasynchronous CAs, where a group of (nearby) cells with homogeneous configurations can be updated independently during evolution.
引用
收藏
页码:87 / 124
页数:38
相关论文
共 7 条
  • [1] A survey of cellular automata: types, dynamics, non-uniformity and applications
    Bhattacharjee, Kamalika
    Naskar, Nazma
    Roy, Souvik
    Das, Sukanta
    [J]. NATURAL COMPUTING, 2020, 19 (02) : 433 - 461
  • [2] Chaudhuri P.P, 1997, Additive Cellular Automata: Theory and Applications, V1
  • [3] Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model -: art. no. 016107
    Cheybani, S
    Kertész, J
    Schreckenberg, M
    [J]. PHYSICAL REVIEW E, 2001, 63 (01): : 016107 - 016101
  • [4] Formal Logic of Cellular Automata
    Das, Sukanta
    Chakraborty, Mihir K.
    [J]. COMPLEX SYSTEMS, 2021, 30 (02): : 187 - 203
  • [5] Fatès N, 2014, J CELL AUTOM, V9, P387
  • [6] Prawitz D., 1965, Natural Deduction: A Proof-Theoretical Study
  • [7] Sutner K., 1991, Complex Systems, V5, P19