Novel electrocatalyst with abundant oxygen vacancies enabling efficient two-electron water oxidation reaction for H2O2 synthesis

被引:6
作者
Guta, Chemeda Barasa [1 ,3 ]
Edao, Habib Gemechu [1 ,3 ]
Dilebo, Woldesenbet Bafe [1 ,3 ]
Chang, Chia-Yu [2 ,3 ]
Angerasa, Fikiru Temesgen [1 ,3 ]
Moges, Endalkachew Asefa [1 ,3 ]
Nikodimos, Yosef [1 ,3 ]
Lakshmanan, Keseven [1 ,3 ]
Tsai, Meng-Che [3 ,5 ]
Su, Wei-Nien [2 ,3 ]
Hwang, Bing Joe [1 ,3 ,4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Nano Electrochem Lab, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Nano Electrochem Lab, Taipei 10607, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Sustainable Electrochem Energy Dev Ctr SEED, Taipei 106, Taiwan
[4] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
[5] Natl Univ Tainan, Dept Greenergy, Tainan 701, Taiwan
关键词
Oxygen vacancy; 2e-WOR; Nanomaterial; Electrocatalysts; Magnesium stannite tungstate; ELECTROCHEMICAL SYNTHESIS; CARBON; REDUCTION; CATALYSTS; SELECTIVITY; NITROGEN; CATHODE; GROWTH; SCALE; FILMS;
D O I
10.1016/j.cej.2024.156418
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the realm of electrocatalytic two-electron water oxidation reaction, the quest for efficient and selective catalysts poses a significant challenge in balancing productivity and activity, hindering the decentralized generation of hydrogen peroxide (H2O2) through electrochemical means. Addressing this hurdle, our study introduces a novel approach to crafting an effective and stable electrocatalyst for the two-electron water oxidation reaction (2e-WOR). Through the synthesis of magnesium stannite tungstate from a mixture of MgSnO3 and WO3, the engineer of a material with abundant oxygen vacancies is crucial for catalytic activity. This catalyst demonstrates exceptional performance, ascribed to its distinctive oxygen vacancies proximal to the active center Sn and electronic modulation by tungsten. Notably, Mg1-xSnWO6-x700 exhibits a remarkably low overpotential of 70 mV at 10 mA cm- 2, coupled with a high faradic efficiency of 84 % for 2e- WOR at 2.6 V vs. RHE, maintaining consistent performance over 35 h. Furthermore, the formation of oxygen vacancies and the associated electronic transfer underscore the novelty and promise of our material in advancing the field of two-electron WOR. In sum, our electrocatalyst presents a cost-efficient and selective solution for water oxidation, offering potential avenues for enhancing H2O2 production.
引用
收藏
页数:14
相关论文
共 65 条
[1]   Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions [J].
Agarwal, Nishtha ;
Freakley, Simon J. ;
McVicker, Rebecca U. ;
Althahban, Sultan M. ;
Dimitratos, Nikolaos ;
He, Qian ;
Morgan, David J. ;
Jenkins, Robert L. ;
Willock, David J. ;
Taylor, Stuart H. ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
SCIENCE, 2017, 358 (6360) :223-226
[2]   One-pot hydrothermal synthesis of Pt-TiO2-Carbon as a highly active and stable electrocatalyst for oxygen reduction reaction [J].
Angerasa, Fikiru Temesgen ;
Chang, Chia -Yu ;
Moges, Endalkachew Asefa ;
Huang, Wei-Hsiang ;
Lakshmanan, Keseven ;
Nikodimos, Yosef ;
Lee, Jyh-Fu ;
Habtu, Nigus Gabbiye ;
Tsai, Meng-Che ;
Su, Wei-Nien ;
Hwang, Bing Joe .
MATERIALS TODAY ENERGY, 2023, 34
[3]   Selective and Efficient Gd-Doped BiVO4 Photoanode for Two-Electron Water Oxidation to H2O2 [J].
Baek, Ji Hyun ;
Gill, Thomas Mark ;
Abroshan, Hadi ;
Park, Sangwook ;
Shi, Xinjian ;
Norskoy, Jens ;
Jung, Hyun Suk ;
Siahrostami, Samira ;
Zheng, Xiaolin .
ACS ENERGY LETTERS, 2019, 4 (03) :720-728
[4]  
Baek J, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-34884-4
[5]   Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis [J].
Cai, Zhao ;
Bi, Yongmin ;
Hu, Enyuan ;
Liu, Wen ;
Dwarica, Nico ;
Tian, Yang ;
Li, Xiaolin ;
Kuang, Yun ;
Li, Yaping ;
Yang, Xiao-Qing ;
Wang, Hailiang ;
Sun, Xiaoming .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)
[6]   Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen [J].
Campos, Maria ;
Siriwatcharapiboon, Wilai ;
Potter, Robert J. ;
Horswell, Sarah L. .
CATALYSIS TODAY, 2013, 202 :135-143
[7]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[8]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Durable and Selective Electrochemical H2O2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture [J].
Cao, Peike ;
Quan, Xie ;
Zhao, Kun ;
Zhao, Xueyang ;
Chen, Shuo ;
Yu, Hongtao .
ACS CATALYSIS, 2021, 11 (22) :13797-13808
[10]   Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites [J].
Chai, Guo-Liang ;
Hou, Zhufeng ;
Ikeda, Takashi ;
Terakura, Kiyoyuki .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (27) :14524-14533