Synthetic spin-orbit coupling for the multispin models in optical lattices

被引:2
|
作者
Zheng, Zhen [1 ,2 ,3 ,4 ]
Zhu, Yan-Qing [3 ,4 ,5 ]
Zhang, Shanchao [1 ,2 ]
Zhu, Shi-Liang [1 ,2 ,5 ]
Wang, Z. D. [3 ,4 ,5 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Sch Phys, Key Lab Atom & Subatom Struct & Quantum Control,Mi, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Peoples R China
[4] Univ Hong Kong, HK Inst Quantum Sci & Technol, Pokfulam Rd, Hong Kong, Peoples R China
[5] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM SIMULATIONS; REALIZATION; SEMIMETAL; FERMIONS; PHASES; BAND; GAS;
D O I
10.1103/PhysRevA.110.033327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The essential role of synthetic spin-orbit coupling in discovering new topological matter phases with cold atoms is widely acknowledged. However, the engineering of spin-orbit coupling remains unclear for arbitraryspin models due to the complexity of spin matrices. In this paper, we develop a more general but relatively straightforward method to achieve spin-orbit coupling for multispin models. Our approach hinges on controlling the coupling between distinct pseudospins through two intermediary states, resulting in tunneling with spin flips that have direction-dependent strength. The engineered spin-orbit coupling can facilitate topological phase transitions with Chern numbers over 1, a unique characteristic of multispin models compared to spin-1/2 models. By utilizing existing cold atom techniques, our proposed method provides an ideal platform for investigating topological properties related to large Chern numbers.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Superexchange and spin-orbit coupling in monolayer and bilayer chromium trihalides
    Song, Kok Wee
    Fal'ko, Vladimir I.
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [42] Spontaneous Currents in Superconducting Systems with Strong Spin-Orbit Coupling
    Mironov, S.
    Buzdin, A.
    PHYSICAL REVIEW LETTERS, 2017, 118 (07)
  • [43] Robust Weyl points in a one-dimensional superlattice with transverse spin-orbit coupling
    Luo, Xi-Wang
    Zhang, Chuanwei
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [44] Tunable spin-orbit coupling and magnetic superstripe phase in a Bose-Einstein condensate
    Luo, Xi-Wang
    Zhang, Chuanwei
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [45] Quasiparticle velocities in two-dimensional electron/hole liquids with spin-orbit coupling
    Aasen, D.
    Chesi, Stefano
    Coish, W. A.
    PHYSICAL REVIEW B, 2012, 85 (07):
  • [46] Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime
    Ang, Yee Sin
    Cao, J. C.
    Zhang, Chao
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (02)
  • [47] Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling
    Liu, Ming-Hao
    Bundesmann, Jan
    Richter, Klaus
    PHYSICAL REVIEW B, 2012, 85 (08)
  • [48] Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling
    Guan, Q.
    Blume, D.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [49] Spin-orbit coupling effects in the quantum Hall regime probed by electron spin resonance
    Shchepetilnikov, A., V
    Frolov, D. D.
    Nefyodov, Yu A.
    Kukushkin, I., V
    Tiemann, I. L.
    Reichl, C.
    Dietsche, W.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2018, 98 (24)
  • [50] Spin susceptibility of interacting two-dimensional electrons in the presence of spin-orbit coupling
    Zak, Robert Andrzej
    Maslov, Dmitrii L.
    Loss, Daniel
    PHYSICAL REVIEW B, 2010, 82 (11):