mulea: An R package for enrichment analysis using multiple ontologies and empirical false discovery rate

被引:0
作者
Turek, Cezary [1 ]
Olbei, Marton [1 ,2 ]
Stirling, Tamas [3 ,4 ,5 ]
Fekete, Gergely [3 ,4 ]
Tasnadi, Ervin [3 ,6 ]
Gul, Leila [1 ,2 ]
Bohar, Balazs [2 ,3 ,7 ]
Papp, Balazs [3 ,4 ]
Jurkowski, Wiktor [1 ]
Ari, Eszter [3 ,4 ,7 ]
机构
[1] Earlham Inst, Norwich Res Pk, Norwich NR4 7UZ, Norfolk, England
[2] Imperial Coll London, Hammersmith Hosp, Dept Metab Digest & Reprod, Commonwealth Bldg,Du Cane Rd, London W12 0NN, England
[3] HUN REN Biol Res Ctr, Inst Biochem, Synthet & Syst Biol Unit, Temesvar Krt 62, H-6726 Szeged, Hungary
[4] HCEMM BRC Metab Syst Biol Res Grp, Temesvar Krt 62, H-6726 Szeged, Hungary
[5] Univ Szeged, Doctoral Sch Biol, Kozep Fasor 52, H-6726 Szeged, Hungary
[6] Univ Szeged, Doctoral Sch Comp Sci, Arpad Ter 2, H-6720 Szeged, Hungary
[7] Eotvos Lorand Univ, Dept Genet, 1-C Pazmany P Stny, H-1117 Budapest, Hungary
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
Gene set enrichment; R package; False discovery rate; Overrepresentation analysis; GMT files; Ontologies; GENE SET ENRICHMENT; RESOURCE; DATABASE; LISTS;
D O I
10.1186/s12859-024-05948-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. mulea is distributed as a CRAN R package downloadable from https://cran.r-project.org/web/packages/mulea/ and https://github.com/ELTEbioinformatics/mulea. It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.
引用
收藏
页数:13
相关论文
共 42 条
  • [1] Alexa A., 2023, topgo: Enrichment Analysis for Gene Ontology. R package version 2.54.0
  • [2] Ari E, 2024, R package
  • [3] OpenXGR: a web-server update for genomic summary data interpretation
    Bao, Chaohui
    Wang, Shan
    Jiang, Lulu
    Fang, Zhongcheng
    Zou, Kexin
    Lin, James
    Chen, Saijuan
    Fang, Hai
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (W1) : W387 - W396
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Next generation software for functional trend analysis
    Berriz, Gabriel F.
    Beaver, John E.
    Cenik, Can
    Tasan, Murat
    Roth, Frederick P.
    [J]. BIOINFORMATICS, 2009, 25 (22) : 3043 - 3044
  • [6] The Gene Ontology resource: enriching a GOld mine
    Carbon, Seth
    Douglass, Eric
    Good, Benjamin M.
    Unni, Deepak R.
    Harris, Nomi L.
    Mungall, Christopher J.
    Basu, Siddartha
    Chisholm, Rex L.
    Dodson, Robert J.
    Hartline, Eric
    Fey, Petra
    Thomas, Paul D.
    Albou, Laurent-Philippe
    Ebert, Dustin
    Kesling, Michael J.
    Mi, Huaiyu
    Muruganujan, Anushya
    Huang, Xiaosong
    Mushayahama, Tremayne
    LaBonte, Sandra A.
    Siegele, Deborah A.
    Antonazzo, Giulia
    Attrill, Helen
    Brown, Nick H.
    Garapati, Phani
    Marygold, Steven J.
    Trovisco, Vitor
    Dos Santos, Gil
    Falls, Kathleen
    Tabone, Christopher
    Zhou, Pinglei
    Goodman, Joshua L.
    Strelets, Victor B.
    Thurmond, Jim
    Garmiri, Penelope
    Ishtiaq, Rizwan
    Rodriguez-Lopez, Milagros
    Acencio, Marcio L.
    Kuiper, Martin
    Laegreid, Astrid
    Logie, Colin
    Lovering, Ruth C.
    Kramarz, Barbara
    Saverimuttu, Shirin C. C.
    Pinheiro, Sandra M.
    Gunn, Heather
    Su, Renzhi
    Thurlow, Katherine E.
    Chibucos, Marcus
    Giglio, Michelle
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D325 - D334
  • [7] Carlo B., 1936, PUBBLICAZIONI R I SU, V8, P3, DOI DOI 10.4135/9781412961288.N455
  • [8] Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool
    Chen, Edward Y.
    Tan, Christopher M.
    Kou, Yan
    Duan, Qiaonan
    Wang, Zichen
    Meirelles, Gabriela Vaz
    Clark, Neil R.
    Ma'ayan, Avi
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [9] Using FlyAtlas to identify better Drosophila melanogaster models of human disease
    Chintapalli, Venkateswara R.
    Wang, Jing
    Dow, Julian A. T.
    [J]. NATURE GENETICS, 2007, 39 (06) : 715 - 720
  • [10] Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkt1102, 10.1093/nar/gkz1031]