State of health estimation of lithium-ion batteries based on interval voltage features

被引:0
|
作者
Li, Zuxin [1 ]
Zhang, Fengying [2 ]
Cai, Zhiduan [1 ]
Xu, Lihao [1 ]
Shen, Shengyu [2 ]
Yu, Ping [2 ]
机构
[1] Huzhou Coll, Sch Intelligent Mfg, Huzhou 313000, Peoples R China
[2] Huzhou Univ, Sch Engn, Huzhou 313000, Peoples R China
关键词
Lithium-ion battery; Interval voltage features; Online sequential extreme learning machine; Hunter-prey optimization; State of health; MODEL;
D O I
10.1016/j.est.2024.114112
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The precise estimation for the state of health of lithium-ion batteries determines whether the battery system can operate reliably and safely. The extraction and selection of features drive further development of the data-driven method, which has a promising application prospect in assessing the state of health. In response to the issue of time-consuming estimation based on the overall charge-discharge profiles, a novel method utilizing the features of a specific voltage region is reported in the paper. This method enables rapid state of health estimation, catering to the requirements of real-world technical applications. First, the dV/dt / dt curves of discharge profiles are analyzed, and three health features related to a regional voltage interval of an equal time difference are extracted. The methodology of correlation is employed to determine the association between the proposed health features and the state of health. Finally, to enhance the precision of estimation, an online sequential extreme learning machine considering the standard hunter-prey optimization algorithm is proposed. The efficacy of the suggested method is confirmed through the utilization of NASA and Oxford datasets that were gathered under diverse working conditions. Based on the experimental results, the three health features and a combination of online sequential extreme learning machine and hunter-prey optimization method can provide high-precision estimation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An estimation model for state of health of lithium-ion batteries using energy-based features
    Cai, Li
    Lin, Jingdong
    Liao, Xiaoyong
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [22] State of Health Estimation Methods for Lithium-Ion Batteries
    Nuroldayeva, Gulzat
    Serik, Yerkin
    Adair, Desmond
    Uzakbaiuly, Berik
    Bakenov, Zhumabay
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023 (NA)
  • [23] State of Health Estimation of Lithium-Ion Batteries Based on Dual Charging State
    Lu D.
    Chen Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (03): : 342 - 352
  • [24] State of health estimation of lithium-ion batteries based on the regional triangle
    Zhang, Ya
    Cai, Yongxiang
    Liu, Wei
    Dou, Zhenlan
    Yao, Bin
    Zhang, Bide
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    JOURNAL OF ENERGY STORAGE, 2023, 69
  • [25] State of health estimation of lithium-ion batteries based on the regional frequency
    Huang, Shaotang
    Liu, Cuicui
    Sun, Huiqin
    Liao, Qiangqiang
    JOURNAL OF POWER SOURCES, 2022, 518
  • [26] Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage
    Gismero, Alejandro
    Schaltz, Erik
    Stroe, Daniel-Ioan
    ENERGIES, 2020, 13 (07)
  • [27] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [28] State Of Health Estimation of Lithium-ion Batteries Based On Regression Techniques
    Azizi, Chaima
    Ben Ali, Jaouher
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 493 - 498
  • [29] Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning
    Zhang, Shaowen
    Zhu, Haiping
    Wu, Jun
    Chen, Zhipeng
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [30] A Simple Method for State of Health Estimation of Lithium-ion Batteries Based on the Constant Voltage Charging Curves
    Zhang, Qi
    Chen, Xin
    Cai, Yaoze
    Cai, Yongxiang
    Liu, Wei
    Liao, Qiangqiang
    ELECTROCHEMISTRY, 2024, 92 (07)