Multi-view streaming clustering with incremental anchor learning

被引:0
作者
Yin, Hongwei [1 ,2 ]
Wei, Linhong [1 ,2 ]
Hu, Wenjun [1 ,2 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Huzhou, Peoples R China
[2] Huzhou Univ, Zhejiang Prov Key Lab Smart Management & Applicat, Huzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-view clustering; data stream clustering; subspace learning; incremental anchor learning;
D O I
10.1117/1.JEI.33.5.053058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-view clustering is a prominent area of interest in machine learning and data mining. However, most existing methods are confined to static multi-view data, posing challenges for achieving multi-view information fusion and clustering in a dynamic streaming context. We propose a multi-view streaming clustering with incremental anchor learning, which effectively partitions continuous chunks of multi-view data into meaningful clusters. Initially, a shared subspace representation is derived to reveal the intrinsic structure hidden across views, which is adapted to the evolving data distribution through incremental learning of anchors. Furthermore, the shared subspace representation, anchors, and clustering assignments are learned simultaneously in a unified framework, where their interactive negotiation avoids the suboptimal solution problem and significantly enhances overall clustering performance. Finally, extensive experiments on several real-world datasets demonstrate that the proposed method achieves superior multi-view clustering performance and efficiency in a streaming context. (c) 2024 SPIE and IS&T
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Center consistency guided multi-view embedding anchor learning for large-scale graph clustering
    Zhang, Xinyue
    Ren, Zhenwen
    Yang, Chao
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [32] Learning unified anchor graph based on affinity relationships with strong consensus for multi-view spectral clustering
    Cai, Zhiling
    Li, Ruijia
    Wu, Hong
    MULTIMEDIA SYSTEMS, 2023, 29 (01) : 261 - 273
  • [33] Learning unified anchor graph based on affinity relationships with strong consensus for multi-view spectral clustering
    Zhiling Cai
    Ruijia Li
    Hong Wu
    Multimedia Systems, 2023, 29 : 261 - 273
  • [34] Multi-view clustering with dual tensors
    Mi, Yong
    Ren, Zhenwen
    Xu, Zhi
    Li, Haoran
    Sun, Quansen
    Chen, Hongxia
    Dai, Jian
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10) : 8027 - 8038
  • [35] Multi-view clustering with dual tensors
    Yong Mi
    Zhenwen Ren
    Zhi Xu
    Haoran Li
    Quansen Sun
    Hongxia Chen
    Jian Dai
    Neural Computing and Applications, 2022, 34 : 8027 - 8038
  • [36] Multi-view clustering indicator learning with scaled similarity
    Liang Yao
    Gui-Fu Lu
    Pattern Analysis and Applications, 2023, 26 (3) : 1395 - 1406
  • [37] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [38] Tensorized Bipartite Graph Learning for Multi-View Clustering
    Xia, Wei
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    Ding, Chris
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5187 - 5202
  • [39] Consistent graph learning for multi-view spectral clustering
    Xie, Deyan
    Gao, Quanxue
    Zhao, Yougang
    Yang, Fan
    Song, Wei
    PATTERN RECOGNITION, 2024, 154
  • [40] Multi-View Fusion with Extreme Learning Machine for Clustering
    Zhang, Yongshan
    Wu, Jia
    Zhou, Chuan
    Cai, Zhihua
    Yang, Jian
    Yu, Philip S.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2019, 10 (05)