A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications

被引:0
|
作者
Ma W. [1 ]
Zheng Y. [1 ]
Li T. [1 ]
Li Z. [1 ]
Li Y. [1 ]
Wang L. [1 ]
机构
[1] School of Information Science and Technology, North China University of Technology, Beijing
关键词
Deep learning; Electroencephalogram (EEG); Emotion recognition; Human computer interaction;
D O I
10.7717/PEERJ-CS.2065
中图分类号
学科分类号
摘要
Emotion recognition utilizing EEG signals has emerged as a pivotal component of human_computer interaction. In recent years, with the relentless advancement of deep learning techniques, using deep learning for analyzing EEG signals has assumed a prominent role in emotion recognition. Applying deep learning in the context of EEG- based emotion recognition carries profound practical implications. Although many model approaches and some review articles have scrutinized this domain, they have yet to undergo a comprehensive and precise classification and summarization process. The existing classifications are somewhat coarse, with insufficient attention given to the potential applications within this domain. Therefore, this article systematically classifies recent developments in EEG-based emotion recognition, providing researchers with a lucid understanding of this field’s various trajectories and methodologies. Additionally, it elucidates why distinct directions necessitate distinct modeling approaches. In conclusion, this article synthesizes and dissects the practical significance of EEG signals in emotion recognition, emphasizing its promising avenues for future application. © Copyright 2024 Ma et al.
引用
收藏
页码:1 / 39
页数:38
相关论文
共 50 条
  • [41] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Qian Cai
    Guo-Chong Cui
    Hai-Xian Wang
    Machine Intelligence Research, 2022, 19 (05) : 472 - 484
  • [42] Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review
    Houssein, Essam H.
    Hammad, Asmaa
    Ali, Abdelmgeid A.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15): : 12527 - 12557
  • [43] EEG-Based Emotion Estimation with Different Deep Learning Models
    Alakus, Talha Burak
    Turkoglu, Ibrahim
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 33 - 37
  • [44] Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition
    Choo, Sanghyun
    Park, Hoonseok
    Kim, Sangyeon
    Park, Donghyun
    Jung, Jae-Yoon
    Lee, Sangwon
    Nam, Chang S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [45] Deep Neural Classifiers for EEG-Based Emotion Recognition in Immersive Environments
    Teo, Jason
    Chia, Jia Tian
    2018 INTERNATIONAL CONFERENCE ON SMART COMPUTING AND ELECTRONIC ENTERPRISE (ICSCEE), 2018,
  • [46] Deep learning-based EEG emotion recognition: Current trends and future perspectives
    Wang, Xiaohu
    Ren, Yongmei
    Luo, Ze
    He, Wei
    Hong, Jun
    Huang, Yinzhen
    FRONTIERS IN PSYCHOLOGY, 2023, 14
  • [47] EEG-Based Emotion Recognition with Manifold Regularized Extreme Learning Machine
    Peng, Yong
    Zhu, Jia-Yi
    Zheng, Wei-Long
    Lu, Bao-Liang
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 974 - 977
  • [48] EEG-based Emotion Recognition of Quran Listeners
    Fattouh, Anas
    Albidewi, Ibrahim
    Baterfi, Bader
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 1338 - 1342
  • [49] EEG-Based Emotion Recognition in Music Listening
    Lin, Yuan-Pin
    Wang, Chi-Hong
    Jung, Tzyy-Ping
    Wu, Tien-Lin
    Jeng, Shyh-Kang
    Duann, Jeng-Ren
    Chen, Jyh-Horng
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (07) : 1798 - 1806
  • [50] EEG-Based BCI Emotion Recognition: A Survey
    Torres, Edgar P.
    Torres, Edgar A.
    Hernandez-Alvarez, Myriam
    Yoo, Sang Guun
    SENSORS, 2020, 20 (18) : 1 - 36