Multiobjective Deep Reinforcement Learning for Computation Offloading and Trajectory Control in UAV-Base-Station-Assisted MEC

被引:0
|
作者
Huang, Hao [1 ]
Chai, Zheng-Yi [1 ]
Sun, Bao-Shan [1 ]
Kang, Hong-Shen [1 ]
Zhao, Ying-Jie [1 ]
机构
[1] Tiangong Univ, Sch Comp Sci, Tianjin Key Lab Autonomous Intelligence Technol &, Tianjin 300387, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Task analysis; Delays; Energy consumption; Real-time systems; Trajectory; Servers; Computation offloading; multiaccess edge computing (MEC); multiobjective reinforcement learning; trajectory control; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION;
D O I
10.1109/JIOT.2024.3420884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV) and base station jointly assisted multiaccess edge computing (UB-MEC) technology is a promising direction to provide flexible computing services for resource-limited devices. Due to the non-real-time observation of device loads and the dynamic nature of demand in UB-MEC, it is a highly challenging problem to make UAV respond in real time to meet user's dynamic preferences in UB-MEC. To this end, we propose a multiobjective deep reinforcement learning (MODRL) for computation offloading and trajectory control (COTC) of UAV. First, the problem is formulated as a multiobjective Markov decision process (MOMDP), where the traditional scalar rewards are extended to vector, corresponding to the number of task data collected, the completion delay, and the UAV's energy consumption, and the weights are dynamically adjusted to meet different user preferences. Then, considering the device load information stored in UAV is non-real-time, an attentional long short-term memory (ALSTM) network is designed to predict real-time states by autofocusing important historical information. The near on-policy experience replay (NOER) reviews experiences close to on-policy can better promote learning of current strategy. The simulation results show that the proposed algorithm can obtain the action policy which meets the user's time-varying preferences, and can achieve a good balance between different objectives under different preferences.
引用
收藏
页码:31805 / 31821
页数:17
相关论文
共 50 条
  • [41] Dynamic Coordination in UAV Swarm Assisted MEC via Decentralized Deep Reinforcement Learning
    Ye, Yuting
    Wei, Wenshu
    Geng, Dongqing
    He, Xiaofan
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 1064 - 1069
  • [42] Flying MEC: Online Task Offloading, Trajectory Planning and Charging Scheduling for UAV-Assisted MEC
    Wei, Qian
    Ouyang, Tao
    Zhou, Zhi
    Chen, Xu
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 460 - 475
  • [43] Ellipsoidal Trajectory Optimization for Minimizing Latency and Data Transmission Energy in UAV-Assisted MEC Using Deep Reinforcement Learning
    Sadia, Rabeya
    Akter, Shathee
    Yoon, Seokhoon
    Forestiero, Agostino
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [44] Deep Reinforcement Learning for Scheduling and Offloading in UAV-Assisted Mobile Edge Networks
    Tian X.
    Miao P.
    Zhang L.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [45] Multiobjective Deep Reinforcement Learning Assisted Resource Allocation for MEC-Caching-Coexist System
    Li, Zan
    Zhao, Zhongling
    Shi, Jia
    Si, Jiangbo
    Xiao, Pei
    Tafazolli, Rahim
    Hu, Hang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6158 - 6170
  • [46] Deep Reinforcement Learning Assisted UAV Trajectory and Resource Optimization for NOMA Networks
    Chen, Peixin
    Zhao, Jian
    Shen, Furao
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 933 - 938
  • [47] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [48] Deep Reinforcement Learning Based Dynamic Trajectory Control for UAV-Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3536 - 3550
  • [49] Deep-Reinforcement-Learning-Based Computation Offloading for Servicing Dynamic Demand in Multi-UAV-Assisted IoT Network
    Lin, Na
    Bai, Lu
    Hawbani, Ammar
    Guan, Yunchong
    Mao, Chaojin
    Liu, Zhi
    Zhao, Liang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17249 - 17263
  • [50] Energy Harvesting and Computation Offloading for UAV-Assisted MEC with NOMA in IoT Network
    Nguyen, Gia-Huy
    Nguyen, Anh-Nhat
    Le, Hien-Hieu
    Do, Tien-Dung
    COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 3, ICCIS 2023, 2024, 969 : 381 - 392