Multiobjective Deep Reinforcement Learning for Computation Offloading and Trajectory Control in UAV-Base-Station-Assisted MEC

被引:0
|
作者
Huang, Hao [1 ]
Chai, Zheng-Yi [1 ]
Sun, Bao-Shan [1 ]
Kang, Hong-Shen [1 ]
Zhao, Ying-Jie [1 ]
机构
[1] Tiangong Univ, Sch Comp Sci, Tianjin Key Lab Autonomous Intelligence Technol &, Tianjin 300387, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Task analysis; Delays; Energy consumption; Real-time systems; Trajectory; Servers; Computation offloading; multiaccess edge computing (MEC); multiobjective reinforcement learning; trajectory control; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION;
D O I
10.1109/JIOT.2024.3420884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV) and base station jointly assisted multiaccess edge computing (UB-MEC) technology is a promising direction to provide flexible computing services for resource-limited devices. Due to the non-real-time observation of device loads and the dynamic nature of demand in UB-MEC, it is a highly challenging problem to make UAV respond in real time to meet user's dynamic preferences in UB-MEC. To this end, we propose a multiobjective deep reinforcement learning (MODRL) for computation offloading and trajectory control (COTC) of UAV. First, the problem is formulated as a multiobjective Markov decision process (MOMDP), where the traditional scalar rewards are extended to vector, corresponding to the number of task data collected, the completion delay, and the UAV's energy consumption, and the weights are dynamically adjusted to meet different user preferences. Then, considering the device load information stored in UAV is non-real-time, an attentional long short-term memory (ALSTM) network is designed to predict real-time states by autofocusing important historical information. The near on-policy experience replay (NOER) reviews experiences close to on-policy can better promote learning of current strategy. The simulation results show that the proposed algorithm can obtain the action policy which meets the user's time-varying preferences, and can achieve a good balance between different objectives under different preferences.
引用
收藏
页码:31805 / 31821
页数:17
相关论文
共 50 条
  • [31] Reliable Computation Offloading of DAG Applications in Internet of Vehicles Based on Deep Reinforcement Learning
    Su, Shengchao
    Yuan, Pengtao
    Dai, Yufeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2116 - 2128
  • [32] Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted Edge Computing
    Zhang, Peiying
    Su, Yu
    Li, Boxiao
    Liu, Lei
    Wang, Cong
    Zhang, Wei
    Tan, Lizhuang
    DRONES, 2023, 7 (03)
  • [33] Caching-Enabled Computation Offloading in Multi-Region MEC Network via Deep Reinforcement Learning
    Yang, Song
    Liu, Jintian
    Zhang, Fei
    Li, Fan
    Chen, Xu
    Fu, Xiaoming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21086 - 21098
  • [34] Profit-Aware Cooperative Offloading in UAV-Enabled MEC Systems Using Lightweight Deep Reinforcement Learning
    Chen, Zheyi
    Zhang, Junjie
    Zheng, Xianghan
    Min, Geyong
    Li, Jie
    Rong, Chunming
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21325 - 21336
  • [35] Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG Task Offloading in UAV-Assisted MEC
    Zheng, Chunxiang
    Pan, Kai
    Dong, Jiadong
    Chen, Lin
    Guo, Qinghu
    Wu, Shunfeng
    Luo, Hanyun
    Zhang, Xiaolin
    IEEE ACCESS, 2024, 12 : 42521 - 42534
  • [36] UAV-Assisted Target Tracking and Computation Offloading in USV-Based MEC Networks
    Wang, Ziyuan
    Du, Jun
    Jiang, Chunxiao
    Ren, Yong
    Zhang, Xiao-Ping
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11389 - 11405
  • [37] A deep reinforcement approach for computation offloading in MEC dynamic networks
    Fan, Yibiao
    Cai, Xiaowei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2024, 2024 (01)
  • [38] Computation Offloading and Resource Allocation in NOMA-MEC: A Deep Reinforcement Learning Approach
    Shang, Ce
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15464 - 15476
  • [39] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [40] Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks
    Chen, Jingxuan
    Cao, Xianbin
    Yang, Peng
    Xiao, Meng
    Ren, Siqiao
    Zhao, Zhongliang
    Wu, Dapeng Oliver
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (01) : 296 - 309