Multiobjective Deep Reinforcement Learning for Computation Offloading and Trajectory Control in UAV-Base-Station-Assisted MEC

被引:0
|
作者
Huang, Hao [1 ]
Chai, Zheng-Yi [1 ]
Sun, Bao-Shan [1 ]
Kang, Hong-Shen [1 ]
Zhao, Ying-Jie [1 ]
机构
[1] Tiangong Univ, Sch Comp Sci, Tianjin Key Lab Autonomous Intelligence Technol &, Tianjin 300387, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Task analysis; Delays; Energy consumption; Real-time systems; Trajectory; Servers; Computation offloading; multiaccess edge computing (MEC); multiobjective reinforcement learning; trajectory control; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION;
D O I
10.1109/JIOT.2024.3420884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV) and base station jointly assisted multiaccess edge computing (UB-MEC) technology is a promising direction to provide flexible computing services for resource-limited devices. Due to the non-real-time observation of device loads and the dynamic nature of demand in UB-MEC, it is a highly challenging problem to make UAV respond in real time to meet user's dynamic preferences in UB-MEC. To this end, we propose a multiobjective deep reinforcement learning (MODRL) for computation offloading and trajectory control (COTC) of UAV. First, the problem is formulated as a multiobjective Markov decision process (MOMDP), where the traditional scalar rewards are extended to vector, corresponding to the number of task data collected, the completion delay, and the UAV's energy consumption, and the weights are dynamically adjusted to meet different user preferences. Then, considering the device load information stored in UAV is non-real-time, an attentional long short-term memory (ALSTM) network is designed to predict real-time states by autofocusing important historical information. The near on-policy experience replay (NOER) reviews experiences close to on-policy can better promote learning of current strategy. The simulation results show that the proposed algorithm can obtain the action policy which meets the user's time-varying preferences, and can achieve a good balance between different objectives under different preferences.
引用
收藏
页码:31805 / 31821
页数:17
相关论文
共 50 条
  • [21] A deep reinforcement approach for computation offloading in MEC dynamic networks
    Fan, Yibiao
    Cai, Xiaowei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2024, 2024 (01)
  • [22] Joint Offloading, Communication and Collaborative Computation Using Deep Reinforcement Learning in MEC Networks
    Nie, Xuefang
    Chen, Xingbang
    Zhang, DingDing
    Zhou, Tianqing
    Zhang, Jiliang
    2023 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2023, 2023,
  • [23] Computation Offloading and Resource Allocation in NOMA-MEC: A Deep Reinforcement Learning Approach
    Shang, Ce
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15464 - 15476
  • [24] Deep Reinforcement Learning-Empowered Trajectory and Resource Allocation Optimization for UAV-Assisted MEC Systems
    Sun, Haowen
    Chen, Ming
    Pan, Yijin
    Cang, Yihan
    Zhao, Jiahui
    Sun, Yuanzhi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (07) : 1823 - 1827
  • [25] Deep Reinforcement Learning Based 3D-Trajectory Design and Task Offloading in UAV-Enabled MEC System
    Liu, Chuanjie
    Zhong, Yalin
    Wu, Ruolin
    Ren, Siyu
    Du, Shuang
    Guo, Bing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 3185 - 3195
  • [26] UAV-Assisted MEC System Considering UAV Trajectory and Task Offloading Strategy
    Xiang, Kun
    He, Yejun
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4677 - 4682
  • [27] Deep-Reinforcement-Learning-Based Computation Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Yan, Junjie
    Zhao, Xiaohui
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19882 - 19897
  • [28] MOIPC-MAAC: Communication-Assisted Multiobjective MARL for Trajectory Planning and Task Offloading in Multi-UAV-Assisted MEC
    Gao, Zhen
    Fu, Jiaming
    Jing, Zongming
    Dai, Yu
    Yang, Lei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 18483 - 18502
  • [29] Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep Reinforcement Learning
    Wang, Jian
    Wang, Yancong
    Ke, Hongchang
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [30] Deep Reinforcement Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous Vehicular Networks
    Ke, Hongchang
    Wang, Jian
    Deng, Lingyue
    Ge, Yuming
    Wang, Hui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (07) : 7916 - 7929