Tuning terahertz magnons in a mixed van der Waals antiferromagnet

被引:0
|
作者
Le Mardele, F. [1 ,2 ]
Mohelsky, I. [1 ,2 ]
Jana, D. [1 ,2 ]
Pawbake, A. [1 ,2 ]
Dzian, J. [1 ,2 ,3 ]
Lee, W. -L. [4 ]
Raju, K. [4 ]
Sankar, R. [4 ]
Faugeras, C. [1 ,2 ]
Potemski, M. [1 ,2 ,5 ,6 ]
Zhitomirsky, M. E. [7 ]
Orlita, M. [1 ,2 ,3 ]
机构
[1] Univ Toulouse 3, Univ Toulouse, Univ Grenoble Alpes, LNCMI EMFL,CNRS,UPR3228,INSA T, Grenoble, France
[2] Univ Toulouse 3, Univ Grenoble Alpes, Univ Toulouse, LNCMI EMFL,CNRS,UPR3228,INSA T, Toulouse, France
[3] Charles Univ Prague, Inst Phys, Ke Karlovu 5, Prague 12116, Czech Republic
[4] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[5] PAS, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[6] Warsaw Univ Technol, CEZAMAT, CENTERA, PL-02822 Warsaw, Poland
[7] Univ Grenoble Alpes, CEA, IRIG, PHELIQS, 17 Ave Martyrs, F-38000 Grenoble, France
关键词
COHERENT-POTENTIAL APPROXIMATION; RAMAN-SCATTERING; SPIN; EXCITATIONS; ALLOYS;
D O I
10.1103/PhysRevB.110.174414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets FePS3 and NiPS3. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe1-xNixPS3 alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Direct Imaging of Antiferromagnet-Ferromagnet Phase Transition in van der Waals Antiferromagnet CrSBr
    Yu, Jingjing
    Liu, Daxiang
    Ding, Zhenyu
    Yuan, Yanan
    Zhou, Jiayuan
    Pei, Fangfang
    Pan, Haolin
    Ma, Tianping
    Jin, Feng
    Wang, Lingfei
    Zhu, Wenguang
    Wang, Shouguo
    Wu, Yizheng
    Liu, Xue
    Hou, Dazhi
    Gao, Yang
    Qiu, Ziqiang
    Yang, Mengmeng
    Li, Qian
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (02)
  • [32] Tuning of Single Mixed (Helical) Dislocations in Core-Shell van der Waals Nanowires
    Sutter, Peter
    Unocic, Raymond R.
    Sutter, Eli
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (37) : 20503 - 20510
  • [33] Strain tuning on Van der Waals negative capacitance transistors
    Chi, Mengshuang
    Li, Ailin
    Zhang, Xiang
    Li, Zekun
    Jia, Mengmeng
    Wang, Jie
    Wang, Zhong Lin
    Zhai, Junyi
    NANO ENERGY, 2024, 126
  • [34] Tuning the magnetic properties of van der Waals materials by intercalation
    Witte, Pim
    van Koten, Annemijn M.
    Kamminga, Machteld E.
    MATERIALS ADVANCES, 2024, 5 (17): : 6702 - 6718
  • [35] Mixed-dimensional van der Waals heterostructures
    Jariwala, Deep
    Marks, Tobin J.
    Hersam, Mark C.
    NATURE MATERIALS, 2017, 16 (02) : 170 - 181
  • [36] Mixed-dimensional van der Waals heterostructures
    Jariwala D.
    Marks T.J.
    Hersam M.C.
    Nature Materials, 1600, Nature Publishing Group (16): : 170 - 181
  • [37] Distinct Optical Excitation Mechanisms of a Coherent Magnon in a van der Waals Antiferromagnet
    Allington, Clifford J.
    Belvin, Carina A.
    Seifert, Urban F. P.
    Ye, Mengxing
    Tai, Tommy
    Baldini, Edoardo
    Son, Suhan
    Kim, Junghyun
    Park, Jaena
    Park, Je-Geun
    Balents, Leon
    Gedik, Nuh
    PHYSICAL REVIEW LETTERS, 2025, 134 (06)
  • [38] Valence band electronic structure of the van der Waals antiferromagnet FePS 3
    Nitschke, Jonah Elias
    Esteras, Dorye L.
    Gutnikov, Michael
    Schiller, Karl
    Manas-Valero, Samuel
    Coronado, Eugenio
    Stupar, Matija
    Zamborlini, Giovanni
    Ponzoni, Stefano
    Baldovi, Jose J.
    Cinchetti, Mirko
    MATERIALS TODAY ELECTRONICS, 2023, 6
  • [39] Lattice and magnetic structure in the van der Waals antiferromagnet VBr3
    Gu, Yimeng
    Hao, Yiqing
    Kao, Zeyu
    Gu, Yiqing
    Liu, Feiyang
    Zheng, Shiyi
    Cao, Huibo
    He, Lunhua
    Zhao, Jun
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [40] Origin of the Magnetic Exciton in the van der Waals Antiferromagnet NiPS3
    Klaproth, T.
    Aswartham, S.
    Shemerliuk, Y.
    Selter, S.
    Janson, O.
    van den Brink, J.
    Buechner, B.
    Knupfer, M.
    Pazek, S.
    Mikhailova, D.
    Efimenko, A.
    Hayn, R.
    Savoyant, A.
    Gubanov, V.
    Koitzsch, A.
    PHYSICAL REVIEW LETTERS, 2023, 131 (25)