Tuning terahertz magnons in a mixed van der Waals antiferromagnet

被引:0
|
作者
Le Mardele, F. [1 ,2 ]
Mohelsky, I. [1 ,2 ]
Jana, D. [1 ,2 ]
Pawbake, A. [1 ,2 ]
Dzian, J. [1 ,2 ,3 ]
Lee, W. -L. [4 ]
Raju, K. [4 ]
Sankar, R. [4 ]
Faugeras, C. [1 ,2 ]
Potemski, M. [1 ,2 ,5 ,6 ]
Zhitomirsky, M. E. [7 ]
Orlita, M. [1 ,2 ,3 ]
机构
[1] Univ Toulouse 3, Univ Toulouse, Univ Grenoble Alpes, LNCMI EMFL,CNRS,UPR3228,INSA T, Grenoble, France
[2] Univ Toulouse 3, Univ Grenoble Alpes, Univ Toulouse, LNCMI EMFL,CNRS,UPR3228,INSA T, Toulouse, France
[3] Charles Univ Prague, Inst Phys, Ke Karlovu 5, Prague 12116, Czech Republic
[4] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[5] PAS, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[6] Warsaw Univ Technol, CEZAMAT, CENTERA, PL-02822 Warsaw, Poland
[7] Univ Grenoble Alpes, CEA, IRIG, PHELIQS, 17 Ave Martyrs, F-38000 Grenoble, France
关键词
COHERENT-POTENTIAL APPROXIMATION; RAMAN-SCATTERING; SPIN; EXCITATIONS; ALLOYS;
D O I
10.1103/PhysRevB.110.174414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets FePS3 and NiPS3. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe1-xNixPS3 alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Spin-phonon coupling in van der Waals antiferromagnet VOCl*
    Wang, Wen-Jun
    Xu, Xi-Tong
    Shen, Jie
    Wang, Zhe
    Zhang, Shi-Le
    Qu, Zhe
    CHINESE PHYSICS B, 2021, 30 (10)
  • [22] Unidirectional magnetoresistance in the van der Waals antiferromagnet CrPS4
    Jia, Lanxin
    Zheng, Zhenyi
    Zhang, Xiwen
    Zhang, Qihan
    Sim, Sheila
    Zhao, Tieyang
    Gu, Youdi
    Zeng, Tao
    Xiao, Rui
    Shi, Shu
    Wu, Jing
    Shen, Lei
    Novoselov, Kostya
    Chen, Jingsheng
    PHYSICAL REVIEW B, 2024, 110 (21)
  • [23] Cavity-enhanced linear dichroism in a van der Waals antiferromagnet
    Huiqin Zhang
    Zhuoliang Ni
    Christopher E. Stevens
    Aofeng Bai
    Frank Peiris
    Joshua R. Hendrickson
    Liang Wu
    Deep Jariwala
    Nature Photonics, 2022, 16 : 311 - 317
  • [24] Magnon polarons in the van der Waals antiferromagnet FePS3
    Vaclavkova, D.
    Palit, M.
    Wyzula, J.
    Ghosh, S.
    Delhomme, A.
    Maity, S.
    Kapuscinski, P.
    Ghosh, A.
    Veis, M.
    Grzeszczyk, M.
    Faugeras, C.
    Orlita, M.
    Datta, S.
    Potemski, M.
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [25] Spin and lattice dynamics in the van der Waals antiferromagnet MnPSe 3
    Liao, Junbo
    Huang, Zhentao
    Shangguan, Yanyan
    Zhang, Bo
    Cheng, Shufan
    Xu, Hao
    Kajimoto, Ryoichi
    Kamazawa, Kazuya
    Bao, Song
    Wen, Jinsheng
    PHYSICAL REVIEW B, 2024, 109 (22)
  • [26] Dipolar spin wave packet transport in a van der Waals antiferromagnet
    Sun, Yue
    Meng, Fanhao
    Lee, Changmin
    Soll, Aljoscha
    Zhang, Hongrui
    Ramesh, Ramamoorthy
    Yao, Jie
    Sofer, Zdenek
    Orenstein, Joseph
    NATURE PHYSICS, 2024, 20 (05) : 794 - 800
  • [27] Spin-mediated shear oscillators in a van der Waals antiferromagnet
    Alfred Zong
    Qi Zhang
    Faran Zhou
    Yifan Su
    Kyle Hwangbo
    Xiaozhe Shen
    Qianni Jiang
    Haihua Liu
    Thomas E. Gage
    Donald A. Walko
    Michael E. Kozina
    Duan Luo
    Alexander H. Reid
    Jie Yang
    Suji Park
    Saul H. Lapidus
    Jiun-Haw Chu
    Ilke Arslan
    Xijie Wang
    Di Xiao
    Xiaodong Xu
    Nuh Gedik
    Haidan Wen
    Nature, 2023, 620 : 988 - 993
  • [28] Author Correction: Fermionic order by disorder in a van der Waals antiferromagnet
    R. Okuma
    D. Ueta
    S. Kuniyoshi
    Y. Fujisawa
    B. Smith
    C. H. Hsu
    Y. Inagaki
    W. Si
    T. Kawae
    H. Lin
    F. C. Chuang
    T. Masuda
    R. Kobayashi
    Y. Okada
    Scientific Reports, 13
  • [29] Cavity-enhanced linear dichroism in a van der Waals antiferromagnet
    Zhang, Huiqin
    Ni, Zhuoliang
    Stevens, Christopher E.
    Bai, Aofeng
    Peiris, Frank
    Hendrickson, Joshua R.
    Wu, Liang
    Jariwala, Deep
    NATURE PHOTONICS, 2022, 16 (04) : 311 - +
  • [30] Cavity-Enhanced Circular Dichroism in a van der Waals Antiferromagnet
    Ren, Shuliang
    Pang, Simin
    Guan, Shan
    Sun, Yu-Jia
    Zhang, Tian-Yu
    Jiang, Nai
    Guo, Jiaqi
    Zheng, Houzhi
    Luo, Jun-Wei
    Tan, Ping-Heng
    Shen, Chao
    Zhang, Jun
    NANO LETTERS, 2025, 25 (07) : 2709 - 2715