3D printed feathers with embedded aerodynamic sensing

被引:0
|
作者
Tu, Ruowen [1 ]
Delplanche, Remy A. [2 ]
Tobalske, Bret W. [2 ]
Inman, Daniel J. [1 ]
Sodano, Henry A. [1 ,3 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Montana, Div Biol Sci, Field Res Stn Ft Missoula, Missoula, MT 59812 USA
[3] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
3D printing; feather; aerodynamics; sensing; gust; MECHANICAL-PROPERTIES; WIND-TUNNEL; FLIGHT; KINEMATICS; STABILITY; STIFFNESS; DYNAMICS; SOLVENT; PIGEONS; SENSORS;
D O I
10.1088/1748-3190/ad87a0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved. Here, we present our 3D printed artificial feathers consisting of hierarchical vane structures with feature dimensions spanning from 10(-2) to 10(2) mm, which have remarkable structural, mechanical and aerodynamic resemblance to natural feathers. The multi-step, multi-scale 3D printing process used in this work can provide scalability for the fabrication of artificial feathers tailored to the specific size requirements of aircraft wings. Moreover, we provide the printed feathers with embedded aerodynamic sensing ability through the integration of customized piezoresistive and piezoelectric transducers for strain and vibration measurements, respectively. Hence, the 3D printed feather transducers combine the aerodynamic advantages from the hierarchical feather structure design with additional aerodynamic sensing capabilities, which can be utilized in future biomechanical studies on birds and can contribute to advancements in high-performance adaptive MAVs.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Modelling, and characterization of 3D printed cellular structures
    Kucewicz, Michal
    Baranowski, Pawel
    Malachowski, Jerzy
    Poplawski, Arkadiusz
    Platek, Pawel
    MATERIALS & DESIGN, 2018, 142 : 177 - 189
  • [22] Design, Modeling, and Control of a 3D Printed Monolithic Soft Robotic Finger With Embedded Pneumatic Sensing Chambers
    Tawk, Charbel
    Zhou, Hao
    Sariyildiz, Emre
    In Het Panhuis, Marc
    Spinks, Geoffrey M.
    Alici, Gursel
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (02) : 876 - 887
  • [23] Bioinspired 3D printed metamaterial for wideband microwave absorption and aerodynamic efficiency
    Ge, Chaoqun
    Dong, Huaiyu
    Li, Zonghan
    Yu, Chen
    Wang, Zhichen
    Sun, Yingjian
    Huang, Yixing
    Zhao, Tian
    Li, Ying
    Wang, Liuying
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 257
  • [24] Design and characterization of innovative 3D printed embedded strain gauges
    Andria, G.
    Di Nisio, A.
    Lanzolla, A. M. L.
    Percoco, G.
    Stano, G.
    2019 IEEE 6TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2019, : 54 - 59
  • [25] Curvature Sensor Based on FBGs Embedded in 3D Printed Patches
    Palma, Pasquale Di
    Iadicicco, Agostino
    Campopiano, Stefania
    IEEE SENSORS JOURNAL, 2021, 21 (16) : 17868 - 17874
  • [26] 3D printed Shape Memory Alloy Wire Embedded Actuator
    Islam, Md Najmul
    Gonzalez, Mario Barron
    Tabassum, Shawana
    Billah, Kazi Md Masum
    17TH IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE, DCAS 2024, 2024,
  • [27] 3D Printed Metal Organic Framework Hydrogel for Dye Adsorption and Gas Sensing
    Zhu, YongChao
    Chen, Ziyi
    Wang, Chengyun
    Yao, Selina X.
    Jin, Qingxin
    Zhou, Jun
    Li, Pengcheng
    Liu, Bingjie
    Long, Yu
    Xu, Hai
    CHEMISTRYSELECT, 2024, 9 (35):
  • [28] FDM 3D Printed Coffee Glove Embedded with Flexible Electronic
    Bahri, Meznan
    Hussain, Muhammad M.
    Brahimi, Tayeb
    Dahrouj, Hayssam
    2017 LEARNING AND TECHNOLOGY CONFERENCE (L&T) - THE MAKERSPACE: FROM IMAGINING TO MAKING!, 2017, : 49 - 53
  • [29] 3D Printed Polymer Photodetectors
    Park, Sung Hyun
    Su, Ruitao
    Jeong, Jaewoo
    Guo, Shuang-Zhuang
    Qiu, Kaiyan
    Joung, Daeha
    Meng, Fanben
    McAlpine, Michael C.
    ADVANCED MATERIALS, 2018, 30 (40)
  • [30] 3D Printed Chromophoric Sensors
    Brounstein, Zachary
    Ronquillo, Jarrod
    Labouriau, Andrea
    CHEMOSENSORS, 2021, 9 (11)