Asymmetric supercapacitors assembled by hollow N, s co-doped carbon spheres decorated FeOOH and Co3S4 nanoparticles

被引:1
|
作者
Ji, Zhenyuan [1 ]
Tang, Guanxiang [1 ]
Zhang, Jingchuang [1 ]
Chuan, Xinghang [1 ]
Zhong, Jiali [1 ]
Lin, Zixin [1 ]
Song, Peng [2 ]
Xu, Keqiang [3 ]
Shen, Xiaoping [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Changzhou Univ, Sch Petrochem Engn, Jiangsu Prov Key Lab Fine Petrochem Engn, Changzhou 213164, Peoples R China
[3] Yancheng Inst Technol, Key Lab Adv Technol Environm Protect Jiangsu Prov, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron oxyhydroxide; Cobalt sulfide; Hollow carbon nanostructure; Asymmetric supercapacitors; Energy density; PERFORMANCE;
D O I
10.1016/j.cej.2024.157619
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exploiting advanced anode and cathode materials with distinctive architectures and multi-component participation is of great significance to boosting the energy density of asymmetric supercapacitors. Herein, ultra-fine FeOOH nanoparticles are in situ grown on the hollow N, S co-doped carbon (HNSC) spheres using a facile solvothermal strategy and subsequent calcination process. Benefiting from the attractive hollow architecture and the synergistic effect between FeOOH and HNSC, the FeOOH/HNSC composite as anode for supercapacitors delivers an optimal capacity of 588.2 C g(-1) (1 A g(-1)) and remains 88.3 % of its initial value after 10,000 cycles at 15 A g(-1) in 6 M KOH. Furthermore, the HNSC-supported Co3S4 nanoparticles are also prepared through a one-step solvothermal strategy. The obtained Co3S4/HNSC composite as cathode achieves a capacity of 420 C g(-1) (1 A g(-1)) and maintains a high retention of 95.3 % after 10,000 cycles at 15 A g(-1). The constructed asymmetric supercapacitor using FeOOH/HNSC and Co3S4/HNSC as anode and cathode appears to possess a superior energy density of 82.3 Wh kg(-1) at 821.6 W kg(-1) with retention of 84.9 % after 10,000 cycles at 10 A g(-1). These attainments demonstrate that constructing multi-component electrode materials with unique structures is an effective method to optimize the electrochemical characteristics of asymmetric supercapacitors.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Composites of NiCo Layered Double Hydroxide Nanosheets and Co3S4 Nanoparticles for Asymmetric Supercapacitors
    Yang, Changying
    Song, Fangxiang
    Chen, Qianlin
    ACS APPLIED NANO MATERIALS, 2023, 6 (12) : 10804 - 10816
  • [2] Defect engineering of hollow porous N, S co-doped carbon spheres-derived materials for high-performance hybrid supercapacitors
    Ji, Zhenyuan
    Tang, Guanxiang
    Chen, Lizhi
    Zhong, Jiali
    Chen, Yao
    Zhu, Guoxing
    Chuan, Xinghang
    Zhang, Jingchuang
    Shen, Xiaoping
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [3] Engineering of Ni3S4/Co3S4 nanosheets@N, S co-doped carbon anode for lithium-ion batteries
    Xu, Kairui
    Ren, Yongqiang
    Zhang, Bei
    Xu, Xiaolong
    Ding, Ping
    Jiang, Yue
    Gong, Qinghua
    Sun, Xuefeng
    Zhou, Guowei
    IONICS, 2021, 27 (12) : 5089 - 5096
  • [4] Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors
    Wang, Qinghong
    Jiao, Lifang
    Du, Hongmei
    Si, Yuchang
    Wang, Yijing
    Yuan, Huatang
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (40) : 21387 - 21391
  • [5] Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors
    Li Fuzhi
    Chen Zhen
    Zhang Dan
    Sun Aokui
    Shi Pu
    Liang Jing
    He Quanguo
    ELECTROCHIMICA ACTA, 2021, 390
  • [6] Synthesis and structural/electrochemical evaluation of N, S co-doped activated porous carbon spheres as efficient electrode material for supercapacitors
    Mehare, Rupali S.
    Chaturvedi, Vikash
    Shelke, Manjusha V.
    ELECTROCHEMICAL SCIENCE ADVANCES, 2021, 1 (03):
  • [7] Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors
    Mohammadi, Abdolkhaled
    Arsalani, Nasser
    Tabrizi, Amin Goljanian
    Moosavifard, Seyyed Ebrahim
    Naqshbandi, Zhwan
    Ghadimi, Laleh Saleh
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 66 - 80
  • [8] Cobalt-based zeolitic imidazole framework derived hollow Co3S4 nanopolyhedrons for supercapacitors
    Zhu, Maiyong
    Yang, Yu
    Zhang, Xun
    Liang, Yiming
    Tang, Jingjing
    APPLIED ORGANOMETALLIC CHEMISTRY, 2024, 38 (08)
  • [9] Decoration of Hollow Mesoporous Carbon Spheres by NiCo2S4 Nanoparticles as Electrode Materials for Asymmetric Supercapacitors
    Liu, Yongkun
    Jiang, Guohua
    Huang, Zheng
    Lu, Qiuling
    Yu, Bo
    Evariste, Uwamahoro
    Ma, Pianpian
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (11): : 8079 - 8089
  • [10] α-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors
    Zardkhoshoui, Akbar Mohammadi
    Ameri, Bahareh
    Davarani, Saied Saeed Hosseiny
    CHEMICAL ENGINEERING JOURNAL, 2021, 422