An Balanced, and Scalable Graph-Based Multiview Clustering Method

被引:1
|
作者
Zhao, Zihua [1 ,2 ]
Nie, Feiping [1 ,2 ]
Wang, Rong [1 ,2 ]
Wang, Zheng [1 ,2 ]
Li, Xuelong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian 710072, Peoples R China
[3] China Telecom Corp Ltd, Inst Artificial Intelligence TeleAI, Beijing 100033, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering methods; Bipartite graph; Vectors; Task analysis; Optimization methods; Laplace equations; Computational modeling; Balanced clustering; bipartite graph; multiview clustering; unsupervised learning;
D O I
10.1109/TKDE.2024.3443534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, graph-based multiview clustering methods have become a research hotspot in the clustering field. However, most existing methods lack consideration of cluster balance in their results. In fact, cluster balance is crucial in many real-world scenarios. Additionally, graph-based multiview clustering methods often suffer from high time consumption and cannot handle large-scale datasets. To address these issues, this paper proposes a novel graph-based multiview clustering method. The method is built upon the bipartite graph. Specifically, it employs a label propagation mechanism to update the smaller anchor label matrix rather than the sample label matrix, significantly reducing the computational cost. The introduced balance constraint in the proposed model contributes to achieving balanced clustering results. The entire clustering model combines information from multiple views through graph fusion. The joint graph and view weight parameters in the model are obtained through task-driven self-supervised learning. Moreover, the model can directly obtain clustering results without the need for the two-stage processing typically used in general spectral clustering. Finally, extensive experiments on toy datasets and real-world datasets are conducted to validate the superiority of the proposed method in terms of clustering performance, clustering balance, and time expenditure.
引用
收藏
页码:7643 / 7656
页数:14
相关论文
共 50 条
  • [21] ROBUST RANK CONSTRAINED SPARSE LEARNING: A GRAPH-BASED METHOD FOR CLUSTERING
    Liu, Ran
    Chen, Mulin
    Wang, Qi
    Li, Xuelong
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4217 - 4221
  • [22] Self-Weighted Graph-Based Framework for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE ACCESS, 2023, 11 : 30197 - 30207
  • [23] Bipartite Graph-Based Projected Clustering With Local Region Guidance for Hyperspectral Imagery
    Zhang, Yongshan
    Jiang, Guozhu
    Cai, Zhihua
    Zhou, Yicong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9551 - 9563
  • [24] Deep Similarity Graph Fusion for Multiview Clustering
    Sun, Weijun
    Jiang, Zhikun
    Chen, Yonghao
    Li, Jiaqing
    Zhou, Chengbin
    Han, Na
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025, 12 (01): : 435 - 446
  • [25] Scalable, balanced model-based clustering
    Zhong, S
    Ghosh, J
    PROCEEDINGS OF THE THIRD SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2003, : 71 - 82
  • [26] Variational Graph Generator for Multiview Graph Clustering
    Chen, Jianpeng
    Ling, Yawen
    Xu, Jie
    Ren, Yazhou
    Huang, Shudong
    Pu, Xiaorong
    Hao, Zhifeng
    Yu, Philip S.
    He, Lifang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,
  • [27] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125
  • [28] Graph-based Clustering for Time Series Data
    Li, Peiyu
    Boubrahimi, Soukaina Filali
    Hamdi, Shah Muhammad
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4464 - 4467
  • [29] Practical Attacks Against Graph-based Clustering
    Chen, Yizheng
    Nadji, Yacin
    Kountouras, Athanasios
    Monrose, Fabian
    Perdisci, Roberto
    Antonakakis, Manos
    Vasiloglou, Nikolaos
    CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1125 - 1142
  • [30] Event Graph-Based News Clustering: The Role of Named Entity-Centered Subgraphs
    Komecoglu, Basak Buluz
    Yilmaz, Burcu
    IEEE ACCESS, 2024, 12 : 105613 - 105632