Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions

被引:3
|
作者
Rodis, Nikolaos [1 ]
Sardianos, Christos [1 ]
Radoglou-Grammatikis, Panagiotis [2 ,3 ]
Sarigiannidis, Panagiotis [2 ]
Varlamis, Iraklis [1 ]
Papadopoulos, Georgios T. H. [1 ]
机构
[1] Harokopio Univ Athens, Dept Informat & Telemat, Athens 17676, Attica, Greece
[2] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani 50150, Greece
[3] K3Y, Sofia 1700, Bulgaria
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Explainable AI; Artificial intelligence; Predictive models; Videos; Visualization; Data models; Image segmentation; Deep learning; Neural networks; deep learning; evaluation; explanation; multimodal explainable artificial intelligence; neural networks; ATTENTION;
D O I
10.1109/ACCESS.2024.3467062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the fact that Artificial Intelligence (AI) has boosted the achievement of remarkable results across numerous data analysis tasks, however, this is typically accompanied by a significant shortcoming in the exhibited transparency and trustworthiness of the developed systems. In order to address the latter challenge, the so-called eXplainable AI (XAI) research field has emerged, which aims, among others, at estimating meaningful explanations regarding the employed model's reasoning process. The current study focuses on systematically analyzing the recent advances in the area of Multimodal XAI (MXAI), which comprises methods that involve multiple modalities in the primary prediction and explanation tasks. In particular, the relevant AI-boosted prediction tasks and publicly available datasets used for learning/evaluating explanations in multimodal scenarios are initially described. Subsequently, a systematic and comprehensive analysis of the MXAI methods of the literature is provided, taking into account the following key criteria: a) The number of the involved modalities (in the employed AI module), b) The processing stage at which explanations are generated, and c) The type of the adopted methodology (i.e. the actual mechanism and mathematical formalization) for producing explanations. Then, a thorough analysis of the metrics used for MXAI methods' evaluation is performed. Finally, an extensive discussion regarding the current challenges and future research directions is provided.
引用
收藏
页码:159794 / 159820
页数:27
相关论文
共 50 条
  • [21] A Literature Review on Applications of Explainable Artificial Intelligence (XAI)
    Kalasampath, Khushi
    Spoorthi, K. N.
    Sajeev, Sreeparvathy
    Kuppa, Sahil Sarma
    Ajay, Kavya
    Maruthamuthu, Angulakshmi
    IEEE ACCESS, 2025, 13 : 41111 - 41140
  • [22] Advancing UAV security with artificial intelligence: A comprehensive survey of techniques and future directions
    Tlili, Fadhila
    Ayed, Samiha
    Fourati, Lamia Chaari
    INTERNET OF THINGS, 2024, 27
  • [23] Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
    Gorriz, J. M.
    Avarez-Illan, I.
    Avarez-Marquina, A.
    Arco, J. E.
    Atzmueller, M.
    Ballarini, F.
    Barakova, E.
    Bologna, G.
    Bonomini, P.
    Castellanos-Dominguez, G.
    Castillo-Barnes, D.
    Cho, S. B.
    Contreras, R.
    Cuadra, J. M.
    Dominguez, E.
    Dominguez-Mateos, F.
    Duro, R. J.
    Elizondo, D.
    Fernandez-Caballero, A.
    Fernandez-Jover, E.
    Formoso, M. A.
    Gallego-Molina, N. J.
    Gamazo, J.
    Gonzalez, J. Garcia
    Garcia-Rodriguez, J.
    Garre, C.
    Garrigos, J.
    Gomez-Rodellar, A.
    Gomez-Vilda, P.
    Grana, M.
    Guerrero-Rodriguez, B.
    Hendrikse, S. C. F.
    Jimenez-Mesa, C.
    Jodra-Chuan, M.
    Julian, V.
    Kotz, G.
    Kutt, K.
    Leming, M.
    de Lope, J.
    Macas, B.
    Marrero-Aguiar, V.
    Martinez, J. J.
    Martinez-Murcia, F. J.
    Martinez-Tomas, R.
    Mekyska, J.
    Nalepa, G. J.
    Novais, P.
    Orellana, D.
    Ortiz, A.
    Palacios-Alonso, D.
    INFORMATION FUSION, 2023, 100
  • [24] Artificial intelligence in the field of nanofluids: A review on applications and potential future directions
    Bahiraei, Mehdi
    Heshmatian, Saeed
    Moayedi, Hossein
    POWDER TECHNOLOGY, 2019, 353 : 276 - 301
  • [25] Artificial intelligence for aging and longevity research: Recent advances and perspectives
    Zhavoronkov, Alex
    Mamoshina, Polina
    Vanhaelen, Quentin
    Scheibye-Knudsen, Morten
    Moskalev, Alexey
    Aliper, Alex
    AGEING RESEARCH REVIEWS, 2019, 49 : 49 - 66
  • [26] Artificial Intelligence Tools in Pediatric Urology: A Comprehensive Review of Recent Advances
    Chowdhury, Adiba Tabassum
    Salam, Abdus
    Naznine, Mansura
    Abdalla, Da'ad
    Erdman, Lauren
    Chowdhury, Muhammad E. H.
    Abbas, Tariq O.
    DIAGNOSTICS, 2024, 14 (18)
  • [27] The role of artificial intelligence in electrodiagnostic and neuromuscular medicine: Current state and future directions
    Taha, Mohamed A.
    Morren, John A.
    MUSCLE & NERVE, 2024, 69 (03) : 260 - 272
  • [28] Advances of artificial intelligence in clinical application and scientific research of neuro-oncology: Current knowledge and future perspectives
    Zhan, Yankun
    Hao, Yanying
    Wang, Xiang
    Guo, Duancheng
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2025, 209
  • [29] A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques
    Nazar, Mobeen
    Alam, Muhammad Mansoor
    Yafi, Eiad
    Su'ud, Mazliham Mohd
    IEEE ACCESS, 2021, 9 : 153316 - 153348
  • [30] Current status and future directions of explainable artificial intelligence in medical imaging
    Saw, Shier Nee
    Yan, Yet Yen
    Ng, Kwan Hoong
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 183