Drl-based navigation approaches in industrial robotics

被引:0
|
作者
Kästner L. [1 ]
Lambrecht J. [1 ]
Vick A. [2 ]
Krüger J. [2 ]
机构
[1] Industry Grade Networks & Clouds Technische Universität Berlin, Ernst Reuter Platz 7, Berlin
[2] Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK, Pascalstr. 8,, Berlin
来源
WT Werkstattstechnik | 2021年 / 111卷 / 09期
关键词
D O I
10.37544/1436-4980-2021-09-09
中图分类号
学科分类号
摘要
Recently, mobile robots have become important tools in various industries, especially in logistics. Deep reinforcement learning emerged as an alternative planning method to replace overly conservative approaches and promises more efficient and flexible navigation. However, deep reinforcement learning approaches are not suitable for long-range navigation due to their proneness to local minima and lack of long-term memory, which hinders its widespread integration into industrial applications of mobile robotics. In this article, we propose a navigation system incorporating deep-reinforcementlearning-based local planners into conventional navigation stacks for long-range navigation of mobile robots. © 2021, VDI Fachmedien GmBH & Co. KG. All rights reserved.
引用
收藏
页码:583 / 586
页数:3
相关论文
共 50 条
  • [1] Behavior Switch for DRL-based Robot Navigation
    Zhang, W.
    Zhang, Y. F.
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 284 - 288
  • [2] DRL-Based Dynamic Destroy Approaches for Agile-Satellite Mission Planning
    Huang, Wei
    Li, Zongwang
    He, Xiaohe
    Xiang, Junyan
    Du, Xu
    Liang, Xuwen
    REMOTE SENSING, 2023, 15 (18)
  • [3] Learning Relation in Crowd Using Gated Graph Convolutional Networks for DRL-Based Robot Navigation
    Jiang, Haoge
    Bhujel, Niraj
    Lin, Zhuoyi
    Wan, Kong-Wah
    Li, Jun
    Jayavelu, Senthilnath
    Jiang, Xudong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (06) : 5085 - 5095
  • [4] All-in-One: A DRL-based Control Switch Combining State-of-the-art Navigation Planners
    Kaestner, Linh
    Cox, Johannes
    Buiyan, Teham
    Lambrecht, Jens
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2861 - 2867
  • [5] DRL-Based Resource Allocation in Remote State Estimation
    Pang, Gaoyang
    Liu, Wanchun
    Li, Yonghui
    Vucetic, Branka
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (07) : 4434 - 4448
  • [6] Study on the influence of airborne LiDAR measurement data representation method on DRL-based UAV navigation performance
    Sheng, Yuanyuan
    Liu, Huanyu
    Li, Junbao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [7] DRL-based Forwarding Strategy in Named Data Networking
    Lv, Jinyang
    Tan, Xiaobin
    Jin, Yang
    Zhu, Jin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6493 - 6498
  • [8] A DRL-Based Container Placement Scheme with Auxiliary Tasks
    Yuan, Ningcheng
    Jia, Chao
    Lu, Jizhao
    Guo, Shaoyong
    Li, Wencui
    Qiu, Xuesong
    Shi, Lei
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1657 - 1671
  • [9] VWP:An Efficient DRL-Based Autonomous Driving Model
    Jin, Yan-Liang
    Ji, Ze-Yu
    Zeng, Dan
    Zhang, Xiao-Ping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2096 - 2108
  • [10] DRL-Based Intelligent Extinguishing Strategy for Firefighting Robots
    Chaoxia, Chenyu
    Shang, Weiwei
    Zhang, Fei
    Zhang, Jinfeng
    Yang, Zhiwei
    Zhou, Junyi
    2024 43RD CHINESE CONTROL CONFERENCE, CCC 2024, 2024, : 4579 - 4584