Exploring the Impact of In Situ-Formed Solid-Electrolyte Interphase on the Cycling Performance of Aluminum Metal Anodes

被引:2
作者
Rakov, Dmitrii A. [1 ,2 ]
Ahmed, Nashaat [1 ]
Kong, Yueqi [1 ]
Nanjundan, Ashok Kumar [3 ,4 ]
Popov, Ivan [5 ,6 ]
Sokolov, Alexei P. [5 ,6 ]
Huang, Xiaodan [1 ]
Yu, Chengzhong [1 ,7 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[3] Univ Southern Queensland, Sch Engn, Springfield, Qld 4300, Australia
[4] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[5] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
[6] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[7] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China
关键词
aluminiun metal anode; ionic liquid electrolytes; electrified interfaces; electrode-electrolyteinterface; solid-electrolyte interphase; formationcycling; IONIC LIQUID; OXIDE-FILM; ELECTROCHEMICAL PROPERTIES; DENDRITE GROWTH; DYNAMICS; SURFACES; SIMULATIONS; TEMPERATURE; CAPACITANCE; ADSORPTION;
D O I
10.1021/acsnano.4c11391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al-0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al-0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.
引用
收藏
页码:28456 / 28468
页数:13
相关论文
共 50 条
[41]   The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid-Electrolyte Interphase Formation on Si Anodes [J].
Browning, Katie L. ;
Sacci, Robert L. ;
Doucet, Mathieu ;
Browning, James F. ;
Kim, Joshua R. ;
Veith, Gabriel M. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) :10018-10030
[42]   Impact of the Transition Metal Dopant in Zinc Oxide Lithium-Ion Anodes on the Solid Electrolyte Interphase Formation [J].
Eisenmann, Tobias ;
Asenbauer, Jakob ;
Rezvani, Seyed Javad ;
Diemant, Thomas ;
Behm, Rolf Jurgen ;
Geiger, Dorin ;
Kaiser, Ute ;
Passerini, Stefano ;
Bresser, Dominic .
SMALL METHODS, 2021, 5 (04)
[43]   Self-assembly formation of solid-electrolyte interphase in gel polymer for lithium metal batteries [J].
Lin, Yu-Hsing ;
Wu, Liang-Ting ;
Zhan, Yu-Ting ;
Jiang, Jyh-Chiang ;
Lee, Yuh-Lang ;
Jan, Jeng-Shiung ;
Teng, Hsisheng .
ENERGY STORAGE MATERIALS, 2023, 61
[44]   The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes [J].
Ma, Xia-Xia ;
Shen, Xin ;
Chen, Xiang ;
Fu, Zhong-Heng ;
Yao, Nan ;
Zhang, Rui ;
Zhang, Qiang .
SMALL STRUCTURES, 2022, 3 (08)
[45]   In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct High-Performance Lithium-Metal Anodes [J].
Liu, Sufu ;
Xia, Xinhui ;
Deng, Shengjue ;
Xie, Dong ;
Yao, Zhujun ;
Zhang, Liyuan ;
Zhang, Shengzhao ;
Wang, Xiuli ;
Tu, Jiangping .
ADVANCED MATERIALS, 2019, 31 (03)
[46]   A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes [J].
Li, Nian-Wu ;
Shi, Yang ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Li, Cong-Ju ;
Wan, Li-Jun ;
Wen, Rui ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) :1505-1509
[47]   Toward the Formation of the Solid Electrolyte Interphase on Alkaline Metal Anodes: Ab Initio Simulations [J].
Stottmeister, Daniel ;
Gross, Axel .
BATTERIES & SUPERCAPS, 2023, 6 (08)
[48]   Reevaluating the Effect of a LiF-Containing Solid Electrolyte Interphase on Lithium Metal Anodes [J].
Liu, Chengkun ;
Ren, Kaixiang ;
Wu, Shilin ;
Zhang, Yuhang ;
Li, Hai-Wen ;
Yao, Meng ;
Jiang, Zhipeng ;
Li, Yongtao .
NANO LETTERS, 2025, 25 (19) :7762-7769
[49]   In Situ Formed Robust Solid Electrolyte Interphase with Organic-Inorganic Hybrid Layer for Stable Zn Metal Anode [J].
Lin, Congjian ;
Li, Tian Chen ;
Wang, Pinji ;
Xu, Yongtai ;
Li, Dong-Sheng ;
Sliva, Arlindo ;
Yang, Hui Ying .
SMALL METHODS, 2024, 8 (12)
[50]   Green in Situ Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes [J].
Wu, Na ;
Shi, Ya-Ru ;
Jia, Ting ;
Du, Xue-Ning ;
Yin, Ya-Xia ;
Xin, Sen ;
Guo, Yu-Guo .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43200-43205