Exploring the Impact of In Situ-Formed Solid-Electrolyte Interphase on the Cycling Performance of Aluminum Metal Anodes

被引:2
作者
Rakov, Dmitrii A. [1 ,2 ]
Ahmed, Nashaat [1 ]
Kong, Yueqi [1 ]
Nanjundan, Ashok Kumar [3 ,4 ]
Popov, Ivan [5 ,6 ]
Sokolov, Alexei P. [5 ,6 ]
Huang, Xiaodan [1 ]
Yu, Chengzhong [1 ,7 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[3] Univ Southern Queensland, Sch Engn, Springfield, Qld 4300, Australia
[4] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[5] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
[6] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[7] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China
关键词
aluminiun metal anode; ionic liquid electrolytes; electrified interfaces; electrode-electrolyteinterface; solid-electrolyte interphase; formationcycling; IONIC LIQUID; OXIDE-FILM; ELECTROCHEMICAL PROPERTIES; DENDRITE GROWTH; DYNAMICS; SURFACES; SIMULATIONS; TEMPERATURE; CAPACITANCE; ADSORPTION;
D O I
10.1021/acsnano.4c11391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al-0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al-0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.
引用
收藏
页码:28456 / 28468
页数:13
相关论文
共 50 条
[31]   Self- terminating, heterogeneous solid-electrolyte interphase enables reversible Li-ether cointercalation in graphite anodes [J].
Xia, Dawei ;
Jeong, Heonjae ;
Hou, Dewen ;
Tao, Lei ;
Li, Tianyi ;
Knight, Kristin ;
Hu, Anyang ;
Kamphaus, Ethan P. ;
Nordlund, Dennis ;
Sainio, Sami ;
Liu, Yuzi ;
Morris, John R. ;
Xu, Wenqian ;
Huang, Haibo ;
Li, Luxi ;
Xiong, Hui ;
Cheng, Lei ;
Lin, Feng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (05)
[32]   Plasma Coupled Electrolyte Additive Strategy for Construction of High-Performance Solid Electrolyte Interphase on Li Metal Anodes [J].
Liu, Ping ;
Shen, Shenghui ;
Qiu, Zhong ;
Yang, Tianqi ;
Liu, Yaning ;
Su, Han ;
Zhang, Yongqi ;
Li, Jingru ;
Cao, Feng ;
Zhong, Yu ;
Liang, Xinqi ;
Chen, Minghua ;
He, Xinping ;
Xia, Yang ;
Wang, Chen ;
Wan, Wangjun ;
Tu, Jiangping ;
Zhang, Wenkui ;
Xia, Xinhui .
ADVANCED MATERIALS, 2024, 36 (30)
[33]   Evolution of the Solid-Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy [J].
Huang, William ;
Attia, Peter M. ;
Wang, Hansen ;
Renfrew, Sara E. ;
Jin, Norman ;
Das, Supratim ;
Zhang, Zewen ;
Boyle, David T. ;
Li, Yuzhang ;
Bazant, Martin Z. ;
McCloskey, Bryan D. ;
Chueh, William C. ;
Cui, Yi .
NANO LETTERS, 2019, 19 (08) :5140-5148
[34]   Ion-Conductive Polytitanosiloxane Networks Enable a Robust Solid-Electrolyte Interface for Long-Cycling Lithium Metal Anodes [J].
Zhong, Yuan ;
Huang, Peng ;
Yan, Wen ;
Su, Zhong ;
Sun, Chuang ;
Xing, Yimin ;
Lai, Chao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
[35]   Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes [J].
Cao, Zhang ;
Zheng, Xueying ;
Wang, Yan ;
Huang, Weibo ;
Li, Yuchen ;
Huang, Yunhui ;
Zheng, Honghe .
NANO ENERGY, 2022, 93
[36]   Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell surface temperature [J].
Andriunas, Ignas ;
Milojevic, Zoran ;
Wade, Neal ;
Das, Prodip K. .
JOURNAL OF POWER SOURCES, 2022, 525
[37]   Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes [J].
Gao, Yao ;
Hou, Zhen ;
Zhou, Rui ;
Wang, Danni ;
Guo, Xuyun ;
Zhu, Ye ;
Zhang, Biao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (17)
[38]   Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification [J].
Wellmann, Julia ;
Brinkmann, Jan-Paul ;
Wankmiller, Bjoern ;
Neuhaus, Kerstin ;
Rodehorst, Uta ;
Hansen, Michael R. ;
Winter, Martin ;
Paillard, Elie .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) :34227-34237
[39]   Recent progress in constructing fluorinated solid-electrolyte interphases for stable lithium metal anodes [J].
Zhang, Di ;
Lv, Pengfei ;
Qin, Wei ;
He, Xin ;
He, Yuanhua .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2025, 32 (02) :270-291
[40]   Formation of a Stable Solid-Electrolyte Interphase at Metallic Lithium Anodes Induced by LiNbO3 Protective Layers [J].
Jiang, Ming ;
Zhang, Qian ;
Danilov, Dmitri L. ;
Eichel, Rudiger-A ;
Notten, Peter H. L. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) :10333-10343