Exploring the Impact of In Situ-Formed Solid-Electrolyte Interphase on the Cycling Performance of Aluminum Metal Anodes

被引:0
|
作者
Rakov, Dmitrii A. [1 ,2 ]
Ahmed, Nashaat [1 ]
Kong, Yueqi [1 ]
Nanjundan, Ashok Kumar [3 ,4 ]
Popov, Ivan [5 ,6 ]
Sokolov, Alexei P. [5 ,6 ]
Huang, Xiaodan [1 ]
Yu, Chengzhong [1 ,7 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[3] Univ Southern Queensland, Sch Engn, Springfield, Qld 4300, Australia
[4] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[5] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
[6] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[7] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China
关键词
aluminiun metal anode; ionic liquid electrolytes; electrified interfaces; electrode-electrolyteinterface; solid-electrolyte interphase; formationcycling; IONIC LIQUID; OXIDE-FILM; ELECTROCHEMICAL PROPERTIES; DENDRITE GROWTH; DYNAMICS; SURFACES; SIMULATIONS; TEMPERATURE; CAPACITANCE; ADSORPTION;
D O I
10.1021/acsnano.4c11391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al-0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al-0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.
引用
收藏
页码:28456 / 28468
页数:13
相关论文
共 50 条
  • [1] Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes
    Xu, Yaobin
    Jia, Hao
    Gao, Peiyuan
    Galvez-Aranda, Diego E.
    Beltran, Saul Perez
    Cao, Xia
    Le, Phung M. L.
    Liu, Jianfang
    Engelhard, Mark H.
    Li, Shuang
    Ren, Gang
    Seminario, Jorge M.
    Balbuena, Perla B.
    Zhang, Ji-Guang
    Xu, Wu
    Wang, Chongmin
    NATURE ENERGY, 2023, 8 (11) : 1345 - 1354
  • [2] In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes
    Jian, Qinping
    Wang, Tianshuai
    Sun, Jing
    Wu, Maochun
    Zhao, Tianshou
    ENERGY STORAGE MATERIALS, 2022, 53 : 559 - 568
  • [3] Borate-Based Artificial Solid-Electrolyte Interphase Enabling Stable Lithium Metal Anodes
    Li, Menghao
    Yang, Xuming
    Wu, Duojie
    Zhang, Qing
    Wei, Xianbin
    Cheng, Yifeng
    Gu, M. Danny
    ACS APPLIED MATERIALS & INTERFACES, 2023, 16 (49) : 66819 - 66825
  • [4] Solid Electrolyte Interphase on Lithium Metal Anodes
    Shen, Zhichuan
    Huang, Junqiao
    Xie, Yu
    Wei, Dafeng
    Chen, Jinbiao
    Shi, Zhicong
    CHEMSUSCHEM, 2024, 17 (11)
  • [5] Solid-Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes
    von Kolzenberg, Lars
    Latz, Arnulf
    Horstmann, Birger
    CHEMSUSCHEM, 2020, 13 (15) : 3901 - 3910
  • [6] Perspective on solid-electrolyte interphase regulation for lithium metal batteries
    Wu, Mingguang
    Li, Yong
    Liu, Xinhua
    Yang, Shichun
    Ma, Jianmin
    Dou, Shixue
    SMARTMAT, 2021, 2 (01): : 5 - 11
  • [7] Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes
    Wu, Haiping
    Jia, Hao
    Wang, Chongmin
    Zhang, Ji-Guang
    Xu, Wu
    ADVANCED ENERGY MATERIALS, 2021, 11 (05)
  • [8] Surface electrochemistry approaches for understanding and creating smooth solid-electrolyte interphase and lithiophilic interfaces for lithium metal anodes
    Gu, Yu
    Wang, Wei-Wei
    Yan, Jia-Wei
    Wu, De-Yin
    Dong, Quan-Feng
    Mao, Bing-Wei
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 26
  • [9] In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes
    Yoon, Insun
    Jurng, Sunhyung
    Abraham, Daniel P.
    Lucht, Brett L.
    Guduru, Pradeep R.
    NANO LETTERS, 2018, 18 (09) : 5752 - 5759
  • [10] Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon
    Patra, Jagabandhu
    Huang, Hao-Tzu
    Xue, Weijiang
    Wang, Chao
    Helal, Ahmed S.
    Li, Ju
    Chang, Jeng-Kuei
    ENERGY STORAGE MATERIALS, 2019, 16 : 146 - 154