DDF: A Novel Dual-Domain Image Fusion Strategy for Remote Sensing Image Semantic Segmentation With Unsupervised Domain Adaptation

被引:5
|
作者
Ran, Lingyan [1 ,2 ]
Wang, Lushuang [1 ,2 ]
Zhuo, Tao [3 ]
Xing, Yinghui [1 ,2 ]
Zhang, Yanning [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Prov Key Lab Speech & Image Informat Proc, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Natl Engn Lab Integrated Aerosp Ground Ocean Big D, Xian 710072, Peoples R China
[3] Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Xianyang, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Training; Adaptation models; Remote sensing; Semantic segmentation; Task analysis; Accuracy; Semantics; Domain adaptation; feature fusion; semantic segmentation;
D O I
10.1109/TGRS.2024.3433564
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The semantic segmentation of remote sensing (RS) images is a challenging and hot issue due to the large amount of unlabeled data and domain variation. Unsupervised domain adaptation (UDA) has proven to be advantageous in leveraging unlabeled information from the target domain. However, traditional approaches of independently fine-tuning UDA models in the source and target domains have a limited effect on the result. In this article, we propose a hybrid training strategy that boosts self-training methods with domain fusion images. First, we introduce a novel dual-domain image fusion (DDF) strategy to effectively utilize the original image, the style-transferred image, and the intermediate-domain information. Second, to further refine the precision of pseudolabels, we present a region-specific reweighting strategy that assigns different weights to pseudolabel regions based on their spatial context. Finally, we conduct a series of extensive benchmark experiments and ablation studies on the ISPRS Vaihingen and Potsdam datasets. These results show the efficiency of our approach and establish a practical basis for implementing semantic segmentation in remote sensors.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DDRNet: Dual-Domain Refinement Network for Remote Sensing Image Semantic Segmentation
    Yang, Zhenhao
    Bi, Fukun
    Hou, Xinghai
    Zhou, Dehao
    Wang, Yanping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 20177 - 20189
  • [2] Decomposition-Based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation
    Ma, Xianping
    Zhang, Xiaokang
    Ding, Xingchen
    Pun, Man-On
    Ma, Siwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation Using Region and Category Adaptive Domain Discriminator
    Chen, Xiaoshu
    Pan, Shaoming
    Chong, Yanwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Unsupervised Domain Adaptation Semantic Segmentation for Remote-Sensing Images via Covariance Attention
    Liu, Yikun
    Kang, Xudong
    Huang, Yuwen
    Wang, Kuikui
    Yang, Gongping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] CMT: Cross Mean Teacher Unsupervised Domain Adaptation for VHR Image Semantic Segmentation
    Yan, Liang
    Fan, Bin
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] MDANet: Unsupervised, Mixed-Domain Adaptation for Semantic Segmentation of Remote Sensing Images
    Cui, Hao
    Zhang, Guo
    Qi, Ji
    Li, Haifeng
    Tao, Chao
    Li, Xue
    Hou, Shasha
    Li, Deren
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation
    Liang, Chenbin
    Cheng, Bo
    Xiao, Baihua
    Dong, Yunyun
    Chen, Jinfen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning
    Bai, Lubin
    Du, Shihong
    Zhang, Xiuyuan
    Wang, Haoyu
    Liu, Bo
    Ouyang, Song
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Unsupervised Domain Adaptation Semantic Segmentation of Remote Sensing Images With Mask Enhancement and Balanced Sampling
    Li, Xin
    Qiu, Yuanbo
    Liao, Jixiu
    Meng, Fan
    Ren, Peng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [10] A Fine-Grained Unsupervised Domain Adaptation Framework for Semantic Segmentation of Remote Sensing Images
    Wang, Luhan
    Xiao, Pengfeng
    Zhang, Xueliang
    Chen, Xinyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4109 - 4121