共 62 条
[11]
Hansen S., Gautam S., Jenssen R., Kampffmeyer M., Anomaly detection-inspired few-shot medical image segmentation through self-supervision with supervoxels, Med Image Anal, 78, (2022)
[12]
Balakrishnan G., Zhao A., Sabuncu M.R., Guttag J., Dalca A.V., Voxelmorph: a learning framework for deformable medical image registration, IEEE Trans Med Imaging, 38, 8, pp. 1788-1800, (2019)
[13]
Jing L., Tian Y., Self-supervised visual feature learning with deep neural networks: a survey, IEEE Trans Pattern Anal Mach Intell, 43, 11, pp. 4037-4058, (2020)
[14]
Liu Y., Zhang X., Zhang S., He X., Part-aware prototype network for few-shot semantic segmentation, Computer Vision-Eccv 2020 Proceedings, Part IX, 16, pp. 142-158, (2020)
[15]
Wang K., Liew J.H., Zou Y., Zhou D., Feng J., Panet: Few-shot image semantic segmentation with prototype alignment, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197-9206, (2019)
[16]
Ruff L., Kauffmann J.R., Vandermeulen R.A., Montavon G., Samek W., Kloft M., Muller K.R., A unifying review of deep and shallow anomaly detection, Proc IEEE, 109, 5, pp. 756-795, (2021)
[17]
Finn C., Abbeel P., Levine S., July) Model-agnostic meta-learning for fast adaptation of deep networks, International Conference on Machine Learning, pp. 1126-1135, (2017)
[18]
Ravi S., Larochelle H., Optimization as a model for few-shot learning, International Conference on Learning Representations, (2017)
[19]
Mishra N., Rohaninejad M., Chen X., Abbeel P., A simple neural attentive meta-learner, Arxiv Preprint Arxiv, 1707, (2017)
[20]
Vinyals O., Blundell C., Lillicrap T., Wierstra D., Matching networks for one shot learning, Adv Neural Inf Process Syst, 29, (2016)