共 62 条
[1]
Ouyang C., Biffi C., Chen C., Kart T., Qiu H., Rueckert D., Self-supervised learning for few-shot medical image segmentation, IEEE Trans Med Imaging, 41, 7, pp. 1837-1848, (2022)
[2]
Roy A.G., Siddiqui S., Polsterl S., Navab N., Wachinger C., ‘Squeeze & excite’guided few-shot segmentation of volumetric images, Med Image Anal, 59, (2020)
[3]
Zhang X., Wei Y., Yang Y., Huang T.S., Sg-one: similarity guidance network for one-shot semantic segmentation, IEEE Trans Cybern, 50, 9, pp. 3855-3865, (2020)
[4]
Zhu J., Li Y., Hu Y., Ma K., Zhou S.K., Zheng Y., Rubik’s cube+: a self-supervised feature learning framework for 3d medical image analysis, Med Image Anal, 64, (2020)
[5]
Lu Q., Li Y., Ye C., Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks, Med Image Anal, 72, (2021)
[6]
Huang Q., Huang Y., Luo Y., Yuan F., Li X., Segmentation of breast ultrasound image with semantic classification of superpixels, Med Image Anal, 61, (2020)
[7]
Irving B., Franklin J.M., Papiez B.W., Anderson E.M., Sharma R.A., Gleeson F.V., Schnabel J.A., Pieces-of-parts for supervoxel segmentation with global context: application to DCE-MRI tumour delineation, Med Image Anal, 32, pp. 69-83, (2016)
[8]
Stutz D., Hermans A., Leibe B., Superpixels: an evaluation of the state-of-the-art, Comput Vis Image Underst, 166, pp. 1-27, (2018)
[9]
Chen L., Bentley P., Mori K., Misawa K., Fujiwara M., Rueckert D., Self-supervised learning for medical image analysis using image context restoration, Med Image Anal, 58, (2019)
[10]
Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Susstrunk S., SLIC superpixels compared to state-of-the-art superpixel methods, IEEE Trans Pattern Anal Mach Intell, 34, 11, pp. 2274-2282, (2012)