Process Development and Techno-Economic Analysis for Combined and Separated CO2 Capture-Electrochemical Utilization

被引:0
|
作者
Al Moinee, Abdullah [2 ]
Rownaghi, Ali A. [3 ]
Rezaei, Fateme [1 ]
机构
[1] Univ Miami, Dept Chem Environm & Mat Engn, Miami, FL 33124 USA
[2] Missouri Univ Sci & Technol, Linda & Bipin Doshi Dept Chem & Biochem Engn, Rolla, MO 65409 USA
[3] US DOE, Natl Energy Technol Lab NETL, Pittsburgh, PA 15236 USA
基金
美国国家科学基金会;
关键词
Electrochemical reduction; Adsorptive capture; Adsorptive reactor; Light olefins production; Techno-economic analysis; Carbon capture and utilization; Combined process; TO-OLEFINS PROCESS; FLUE-GAS; CARBON CAPTURE; LIGHT OLEFINS; METHANOL; REMOVAL; COAL; ELECTROLYSIS; ADSORPTION; SIMULATION;
D O I
10.1016/j.cej.2024.155909
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Combining CO2 capture and utilization into a single unit operation offers a feasible solution for converting a sustainable feedstock into marketable commodity chemicals, while reducing energy requirements from separated processes. In this research, we developed a process model and performed a techno-economic analysis (TEA) for point-source CO2 capture and electrochemical-based utilization in light olefins production under both separated and integrated scenarios. CO2 containing flue gas from a 500 MW power plant was utilized as a feed while CO2 utilization involved electrochemical reduction reactions to produce light olefins directly from CO2. A meticulous analysis was conducted, probing into the multifaceted impacts of various operating parameters, material properties, and downstream treatment units. Factors such as pressure, temperature, H2O/CO2 molar ratio, catalyst and adsorbent activities, deactivation rate, and heat integration were optimized to achieve 95 % CO2 recovery and > 90 % conversion, and > 85 % ethylene yield. Through a comprehensive TEA, our findings unveiled that the combined process utilizing bifunctional adsorbent/catalyst materials (BFMs) incurs costs of approximately $284/ton CO2, whereas the separated process reported expenses of similar to$516/ton CO2. This study, pivotal in its contributions, evaluated economic feasibility of combined capture-conversion method based on BFMs for CO2 removal and subsequent utilization via a promising advanced process model for sustainable feedstocks conversion to commodity chemicals.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Techno-Economic Analysis of Amine-based CO2 Capture Technology: Hunter Plant Case Study
    Panja, Palash
    McPherson, Brian
    Deo, Milind
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 3
  • [42] Techno-economic analysis of onboard CO2 capture for ultra-large container ships
    Visona, Marco
    Bezzo, Fabrizio
    d'Amore, Federico
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [43] Methanol synthesis through CO2 capture and hydrogenation: Thermal integration, energy performance and techno-economic assessment
    Battaglia, Patrizio
    Buffo, Giulio
    Ferrero, Domenico
    Santarelli, Massimo
    Lanzini, Andrea
    JOURNAL OF CO2 UTILIZATION, 2021, 44
  • [44] A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture
    Rumayor, M.
    Dominguez-Ramos, A.
    Perez, P.
    Irabien, A.
    JOURNAL OF CO2 UTILIZATION, 2019, 34 : 490 - 499
  • [45] Techno-economic analysis of integrated MIDREX process with CO2 capture and storage: Evaluating sustainability and viability for iron production
    Vu, Thang Toan
    Seo, Junhyeong
    Kim, Eunkyu
    Ryoo, Seung Gul
    Park, Byung Cheol
    Song, Daesung
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 189 : 1314 - 1322
  • [46] Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements
    Li, Kangkang
    Leigh, Wardhaugh
    Feron, Paul
    Yu, Hai
    Tade, Moses
    APPLIED ENERGY, 2016, 165 : 648 - 659
  • [47] Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO2 capture based on membrane technology
    Sofia, Daniele
    Giuliano, Aristide
    Poletto, Massimo
    Barletta, Diego
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1373 - 1378
  • [48] Techno-economic analysis of a hybrid CO2 capture system for natural gas combined cycles with selective exhaust gas recirculation
    Diego, Maria Elena
    Bellas, Jean-Michel
    Pourkashanian, Mohamed
    APPLIED ENERGY, 2018, 215 : 778 - 791
  • [49] A CO2 utilization framework for liquid fuels and chemical production: techno-economic and environmental analysis
    Do, Thai Ngan
    You, Chanhee
    Kim, Jiyong
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (01) : 169 - 184
  • [50] Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance
    Yi, Qun
    Gong, Min-Hui
    Huang, Yi
    Feng, Jie
    Hao, Yan-Hong
    Zhang, Ji-Long
    Li, Wen-Ying
    ENERGY, 2016, 112 : 618 - 628