Crystalline electric field and magnetic anisotropy in Dy-based icosahedral quasicrystal and approximant

被引:2
作者
Watanabe S. [1 ]
Iwasaki T. [2 ]
机构
[1] Department of Basic Sciences, Kyushu Institute of Technology, Fukuoka, Kitakyushu
[2] Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Kitakyushu
基金
日本学术振兴会;
关键词
Crystals - Electric fields - Magnetic anisotropy - Mirrors - Quasicrystals - Rare earths;
D O I
10.1103/PhysRevB.108.045110
中图分类号
学科分类号
摘要
The lack of the theory of the crystalline electric field (CEF) in rare-earth-based quasicrystal (QC) and approximant crystal (AC) has prevented us from understanding the electronic states. Recent success of the formulation of the CEF theory on the basis of the point charge model has made it possible to analyze the CEF microscopically. Here, by applying this formulation to the QC Au-SM-Dy (SM=Si, Ge, Al, and Ga) and AC, we theoretically analyze the CEF. In the Dy3+ ion with 4f9 configuration, the CEF Hamiltonian is diagonalized by the basis set for the total angular momentum J=15/2. The ratio of the valences of the screened ligand ions α=ZSM/ZAu plays an important role in characterizing the CEF ground state. For 0≤α<0.30, the magnetic easy axis for the CEF ground state is shown to be perpendicular to the mirror plane. On the other hand, for α>0.30, the magnetic easy axis is shown to be lying in the mirror plane and as α increases, the easy axis rotates to the clockwise direction in the mirror plane at the Dy site and tends to approach the pseudo-fold-fold axis. Possible relevance of these results to experiments is discussed. © 2023 American Physical Society.
引用
收藏
相关论文
共 26 条
[1]  
Shechtman D., Blech I., Gratias D., Cahn J. W., Phys. Rev. Lett, 53, (1984)
[2]  
Deguchi K., Matsukawa S., Sato N. K., Hattori T., Ishida K., Takakura H., Ishimasa T., Nat. Mater, 11, (2012)
[3]  
Watanuki T., Kashimoto S., Kawana D., Yamazaki T., Machida A., Tanaka Y., Sato T. J., Phys. Rev. B, 86, (2012)
[4]  
Kamiya K., Takeuchi T., Kabeya N., Wada N., Ishimasa T., Ochiai A., Deguchi K., Imura K., Sato N. K., Nat. Commun, 9, (2018)
[5]  
Sato N. K., Ishimasa T., Deguchi K., Imura K., J. Phys. Soc. Jpn, 91, (2022)
[6]  
Goldman A. I., Kong T., Kreyssig A., Jesche A., Ramazanoglu M., Dennis K. W., Bud'ko S. L., Canfield P. C., Nat. Mater, 12, (2013)
[7]  
Tamura R., Muro Y., Hiroto T., Nishimoto K., Takabatake T., Phys. Rev. B, 82, (2010)
[8]  
Mori A., Ota H., Yoshiuchi S., Iwakawa K., Taga Y., Hirose Y., Takeuchi T., Yamamoto E., Haga Y., Honda F., Settai R., Onuki Y., J. Phys. Soc. Jpn, 81, (2012)
[9]  
Tamura R., Muro Y., Hiroto T., Yaguchi H., Beutier G., Takabatake T., Phys. Rev. B, 85, (2012)
[10]  
Hiroto T., Gebresenbut G. H., Pay Gomez C., Muro Y., Isobe M., Ueda Y., Tokiwa K., Tamura R., J. Phys.: Condens. Matter, 25, (2013)