Synthesis of boron-doped reduced graphene oxide as electrode material for supercapacitor applications

被引:1
|
作者
Bhardwaj, Jai Shree [1 ]
Agarwal, Pratima [1 ,2 ]
机构
[1] Indian Inst Technol Guwahati, Sch Energy Sci & Engn, Gauhati, Assam, India
[2] Indian Inst Technol Guwahati, Dept Phys, Gauhati, Assam, India
关键词
REDUCTION;
D O I
10.1007/s10854-024-13675-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene-based materials are majorly utilized as electrode in supercapacitors due to its tunable electrochemical, structural, and electrical properties. Doping of graphene-based materials with different heteroatoms such as boron, nitrogen, and sulfur is an effective way for improving the capacitive properties. Among various routes, chemical doping is an easy and economic approach. Here, we are reporting bulk synthesis of boron-doped reduced graphene oxide (B-rGO and r-BGO) as an electrode material for supercapacitors using boric acid (H3BO3) as boron source. In r-BGO, GO is first reacted with boric acid and then reduced, whereas in B-rGO boron doping is done after reduction from GO to r-GO. The structural properties of boron-doped samples in comparison with graphene oxide (GO), graphite, and reduced graphene oxide (r-GO) have been studied by XRD, Raman, and FETEM analyses. The boron doping of similar to 9% has been confirmed by EDAX analysis. The r-BGO samples are highly crystalline in nature, whereas B-rGO is amorphous. An increase in interlayer spacing from 0.23 nm for GO to 0.28 nm has been observed in r-BGO. This could be due to intercalation of boron atom in the lattice. FTIR studies also confirm the doping due to presence of B-C and B-O bond. We have reported an increased specific capacitance of 326.56 +/- 3.1 F/g for r-BGO compared to GO (137.88 +/- 1.8 F/g) and r-GO (108.85 +/- 1.6 F/g).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Electrochemical investigation of phosphorous and boron heteroatoms incorporated reduced graphene oxide electrode material for supercapacitor applications
    Surya, Sekar
    Pandurangan, Arumugam
    Govindaraj, Rajamanickam
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [2] Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors
    Niu, Lengyuan
    Li, Zhangpeng
    Hong, Wei
    Sun, Jinfeng
    Wang, Zhaofeng
    Ma, Limin
    Wang, Jinqing
    Yang, Shengrong
    ELECTROCHIMICA ACTA, 2013, 108 : 666 - 673
  • [3] Hybrid of cerium dioxide nanoparticles/reduced graphene oxide as an electrode material for supercapacitor applications
    Salarizadeh, Parisa
    Askari, Mohammad Bagher
    Beydaghi, Hossein
    Rastgoo-Deylami, Mohadese
    Rozati, Seyed Mohammad
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 159
  • [4] Tuning the properties of boron-doped reduced graphene oxide by altering the boron content
    Ngidi, Nonjabulo P. D.
    Ollengo, Moses A.
    Nyamori, Vincent O.
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (39) : 16864 - 16876
  • [5] Electrochemical Behavior of Cobalt Oxide/Boron-Incorporated Reduced Graphene Oxide Nanocomposite Electrode for Supercapacitor Applications
    Naresh Muthu, R.
    Tatiparti, Sankara Sarma V.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (10) : 6535 - 6549
  • [6] Electrochemical Behavior of Cobalt Oxide/Boron-Incorporated Reduced Graphene Oxide Nanocomposite Electrode for Supercapacitor Applications
    R. Naresh Muthu
    Sankara Sarma V. Tatiparti
    Journal of Materials Engineering and Performance, 2020, 29 : 6535 - 6549
  • [7] Graphene oxide/polyaniline nanocomposite as an electrode material for supercapacitor applications
    Anoud Saud Alshammari
    Nidhi Puri
    Swati Chaudhary
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [8] Graphene oxide/polyaniline nanocomposite as an electrode material for supercapacitor applications
    Alshammari, Anoud Saud
    Puri, Nidhi
    Chaudhary, Swati
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (27)
  • [9] Synthesis And Characterization Of Graphene-Zinc Oxide Nanocomposite Electrode Material For Supercapacitor Applications
    Rajeswari, V.
    Jayavel, R.
    Dhanemozhi, A. Clara
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 645 - 652
  • [10] Facile Synthesis of Boron-Doped Reduced Electrochemical Graphene Oxide for Sodium Ion Battery Anode
    Yubai Zhang
    Jiadong Qin
    Munkhbayar Batmunkh
    Yu Lin Zhong
    JOM, 2021, 73 : 2531 - 2539