Synthesis of boron-doped reduced graphene oxide as electrode material for supercapacitor applications

被引:1
|
作者
Bhardwaj, Jai Shree [1 ]
Agarwal, Pratima [1 ,2 ]
机构
[1] Indian Inst Technol Guwahati, Sch Energy Sci & Engn, Gauhati, Assam, India
[2] Indian Inst Technol Guwahati, Dept Phys, Gauhati, Assam, India
关键词
REDUCTION;
D O I
10.1007/s10854-024-13675-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene-based materials are majorly utilized as electrode in supercapacitors due to its tunable electrochemical, structural, and electrical properties. Doping of graphene-based materials with different heteroatoms such as boron, nitrogen, and sulfur is an effective way for improving the capacitive properties. Among various routes, chemical doping is an easy and economic approach. Here, we are reporting bulk synthesis of boron-doped reduced graphene oxide (B-rGO and r-BGO) as an electrode material for supercapacitors using boric acid (H3BO3) as boron source. In r-BGO, GO is first reacted with boric acid and then reduced, whereas in B-rGO boron doping is done after reduction from GO to r-GO. The structural properties of boron-doped samples in comparison with graphene oxide (GO), graphite, and reduced graphene oxide (r-GO) have been studied by XRD, Raman, and FETEM analyses. The boron doping of similar to 9% has been confirmed by EDAX analysis. The r-BGO samples are highly crystalline in nature, whereas B-rGO is amorphous. An increase in interlayer spacing from 0.23 nm for GO to 0.28 nm has been observed in r-BGO. This could be due to intercalation of boron atom in the lattice. FTIR studies also confirm the doping due to presence of B-C and B-O bond. We have reported an increased specific capacitance of 326.56 +/- 3.1 F/g for r-BGO compared to GO (137.88 +/- 1.8 F/g) and r-GO (108.85 +/- 1.6 F/g).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications
    Thirumal, V.
    Pandurangan, A.
    Jayavel, R.
    Ilangovan, R.
    SYNTHETIC METALS, 2016, 220 : 524 - 532
  • [2] Facile Synthesis of Boron-Doped Reduced Electrochemical Graphene Oxide for Sodium Ion Battery Anode
    Zhang, Yubai
    Qin, Jiadong
    Batmunkh, Munkhbayar
    Zhong, Yu Lin
    JOM, 2021, 73 (08) : 2531 - 2539
  • [3] Reduced Graphene Oxide Supported Molybdenum Oxide Hybrid Nanocomposites: High Performance Electrode Material for Supercapacitor and Photocatalytic Applications
    Dhanabal, Rengasamy
    Naveena, Dhanasekaran
    Velmathi, Sivan
    Bose, Arumugam Chandra
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (07) : 4035 - 4046
  • [4] Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor
    Bakhshandeh, Mohammad Bagher
    Kowsari, Elaheh
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (05) : 2595 - 2612
  • [5] Synthesis of hydrothermally derived boron and sulfur-incorporated reduced graphene oxide sheets for supercapacitor applications
    Sekar, Surya
    Arumugam, Pandurangan
    Rajamanickam, Govindaraj
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2023, 31 (09) : 845 - 855
  • [6] Facile synthesis of nitrogen-doped and boron-doped reduced graphene oxide using radio-frequency plasma for supercapacitors
    Wu, Shilin
    Zhang, Cheng
    Cui, Xiaoyang
    Zhang, Shuai
    Yang, Qing
    Shao, Tao
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (26)
  • [7] Polythiophene/nitrogen-doped reduced graphene oxide nanocomposite as a hybrid supercapacitor electrode
    Khanari, Hassan
    Lashkenari, Mohammad Soleimani
    Esfandian, Hossein
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 68 : 27 - 34
  • [8] A Facile Bulk Production of Processable Partially Reduced Graphene Oxide as Superior Supercapacitor Electrode Material
    Saha, Uttam
    Jaiswal, Rimpa
    Goswami, Thako Hari
    ELECTROCHIMICA ACTA, 2016, 196 : 386 - 404
  • [9] Synthesis of reduced graphene oxide and a study on its electrochemical performance for supercapacitor applications
    Rabecca, H. J. Trinity
    Lourduraj, A. J. Clement
    MATERIALS TODAY-PROCEEDINGS, 2022, 68 : 335 - 340
  • [10] A New Partially Reduced Graphene Oxide Nanosheet/Polyaniline Nanowafer Hybrid as Supercapacitor Electrode Material
    Gao, Zan
    Yang, Wanlu
    Wang, Jun
    Wang, Bin
    Li, Zhanshuang
    Liu, Qi
    Zhang, Milin
    Liu, Lianhe
    ENERGY & FUELS, 2013, 27 (01) : 568 - 575