Suspended tip overhanging from chip edge for atomic force microscopy with an optomechanical resonator

被引:0
作者
Markovic, Aleksandra [1 ]
Lefebvre, Mathis [2 ]
Mazenq, Laurent [1 ]
Charlot, Samuel [1 ]
Gely, Marc [2 ]
Lecestre, Aurelie [1 ]
Arribat, Mathieu [1 ]
Jourdan, Guillaume [2 ]
Legrand, Bernard [1 ]
机构
[1] Univ Toulouse, CNRS, LAAS CNRS, Toulouse, France
[2] Univ Grenoble Alpes, CEA LETI, Grenoble, France
来源
JOURNAL OF OPTICAL MICROSYSTEMS | 2024年 / 4卷 / 03期
关键词
atomic force microscopy; cavity optomechanics; microfabrication; plasma etching; saw dicing; suspended tip;
D O I
10.1117/1.JOM.4.3.033501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Raising the mechanical frequency of atomic force microscopy (AFM) probes to increase the measurement bandwidth has been a long-standing expectation in the field and a technically difficult challenge. Recent advances in cavity optomechanics and in-plane probe designs have yielded significant progress. In situations in which an AFM tip extends a few micrometers from a planar optomechanical resonator, we present an approach to make it overhang from the probe die with precise control of the edge-line position. This fabrication step, which exposes the tip apex to the sample surface, is a prerequisite for any AFM experiment with optomechanical probes. We utilize a combination of saw dicing and time-controlled isotropic plasma etching to undercut the 725-mu m-thick silicon substrate beneath the tip. The technique is easy to implement without any lithography steps. The overhang length of the tip is controlled to less than 5 mu m with very good smoothness of the edge, reproducibility, and yield.
引用
收藏
页数:11
相关论文
共 19 条
[1]   Optomechanical resonating probe for very high frequency sensing of atomic forces [J].
Allain, Pierre Etienne ;
Schwab, Lucien ;
Mismer, Colin ;
Gely, Marc ;
Mairiaux, Estelle ;
Hermouet, Maxime ;
Walter, Benjamin ;
Leo, Giuseppe ;
Hentz, Sebastien ;
Faucher, Marc ;
Jourdan, Guillaume ;
Legrand, Bernard ;
Favero, Ivan .
NANOSCALE, 2020, 12 (05) :2939-2945
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   High Frequency GaAs Nano-Optomechanical Disk Resonator [J].
Ding, Lu ;
Baker, Christophe ;
Senellart, Pascale ;
Lemaitre, Aristide ;
Ducci, Sara ;
Leo, Giuseppe ;
Favero, Ivan .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[4]   Optomechanics of deformable optical cavities [J].
Favero, Ivan ;
Karrai, Khaled .
NATURE PHOTONICS, 2009, 3 (04) :201-205
[5]   Cavity Optomechanical Magnetometer [J].
Forstner, S. ;
Prams, S. ;
Knittel, J. ;
van Ooijen, E. D. ;
Swaim, J. D. ;
Harris, G. I. ;
Szorkovszky, A. ;
Bowen, W. P. ;
Rubinsztein-Dunlop, H. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[6]   Membrane-Based Scanning Force Microscopy [J].
Halg, David ;
Gisler, Thomas ;
Tsaturyan, Yeghishe ;
Catalini, Letizia ;
Grob, Urs ;
Krass, Marc-Dominik ;
Heritier, Martin ;
Mattiat, Hinrich ;
Thamm, Ann-Katrin ;
Schirhagl, Romana ;
Langman, Eric C. ;
Schliesser, Albert ;
Degen, Christian L. ;
Eichler, Alexander .
PHYSICAL REVIEW APPLIED, 2021, 15 (02)
[7]   A general procedure for thermomechanical calibration of nano/micro-mechanical resonators [J].
Hauer, B. D. ;
Doolin, C. ;
Beach, K. S. D. ;
Davis, J. P. .
ANNALS OF PHYSICS, 2013, 339 :181-207
[8]  
Hermouet M, 2018, PROC IEEE MICR ELECT, P844, DOI 10.1109/MEMSYS.2018.8346687
[9]  
Ket Chin L., 2020, Adv. Devices Instrum, V2020, P1, DOI [10.34133/2020/1964015, DOI 10.34133/2020/1964015]
[10]   Nanofabricated tips for device-based scanning tunneling microscopy [J].
Leeuwenhoek, Maarten ;
Norte, Richard A. ;
Bastiaans, Koen M. ;
Cho, Doohee ;
Battisti, Irene ;
Blanter, Yaroslav M. ;
Groblecher, Simon ;
Allan, Milan P. .
NANOTECHNOLOGY, 2019, 30 (33)