Drug-target interaction prediction by integrating heterogeneous information with mutual attention network

被引:2
|
作者
Zhang, Yuanyuan [1 ]
Wang, Yingdong [1 ]
Wu, Chaoyong [2 ]
Zhan, Lingmin [1 ]
Wang, Aoyi [1 ]
Cheng, Caiping [1 ]
Zhao, Jinzhong [1 ]
Zhang, Wuxia [1 ]
Chen, Jianxin [2 ]
Li, Peng [1 ]
机构
[1] Shanxi Agr Univ, Coll Basic Sci, Shanxi Key Lab Modernizat TCVM, Jinzhong 030801, Peoples R China
[2] Beijing Univ Chinese Med, Sch Tradit Chinese Med, Beijing 100029, Peoples R China
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
关键词
Drug-target interaction; Drug discovery; Heterogeneous network; Self-attention; Deep learning; IDENTIFICATION; KNOWLEDGEBASE;
D O I
10.1186/s12859-024-05976-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundIdentification of drug-target interactions is an indispensable part of drug discovery. While conventional shallow machine learning and recent deep learning methods based on chemogenomic properties of drugs and target proteins have pushed this prediction performance improvement to a new level, these methods are still difficult to adapt to novel structures. Alternatively, large-scale biological and pharmacological data provide new ways to accelerate drug-target interaction prediction.MethodsHere, we propose DrugMAN, a deep learning model for predicting drug-target interaction by integrating multiplex heterogeneous functional networks with a mutual attention network (MAN). DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks collected by a certain screening conditions, respectively. DrugMAN then captures interaction information between drug and target representations by a mutual attention network to improve drug-target prediction.ResultsDrugMAN achieved the best performance compared with cheminformation-based methods SVM, RF, DeepPurpose and network-based deep learing methods DTINet and NeoDT in four different scenarios, especially in real-world scenarios. Compared with SVM, RF, deepurpose, DTINet, and NeoDT, DrugMAN showed the smallest decrease in AUROC, AUPRC, and F1-Score from warm-start to Both-cold scenarios. This result is attributed to DrugMAN's learning from heterogeneous data and indicates that DrugMAN has a good generalization ability. Taking together, DrugMAN spotlights heterogeneous information to mine drug-target interactions and can be a powerful tool for drug discovery and drug repurposing.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Drug-Target Interaction Prediction Model Using Optimal Recurrent Neural Network
    Kavipriya, G.
    Manjula, D.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02) : 1675 - 1689
  • [32] Heterogeneous network propagation with forward similarity integration to enhance drug-target association prediction
    Tangmanussukum, Piyanut
    Kawichai, Thitipong
    Suratanee, Apichat
    Plaimas, Kitiporn
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [33] Drug-Target Interaction Prediction Based on Gaussian Interaction Profile and Information Entropy
    Liu, Lina
    Yao, Shuang
    Ding, Zhaoyun
    Guo, Maozu
    Yu, Donghua
    Hu, Keli
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 388 - 399
  • [34] A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network
    Zheng, Ying
    Wu, Zheng
    ACS OMEGA, 2021, 6 (04): : 3037 - 3045
  • [35] DRUG-TARGET INTERACTION PREDICTION BY INTEGRATING CHEMICAL, GENOMIC, FUNCTIONAL AND PHARMACOLOGICAL DATA
    Yang, Fan
    Xu, Jinbo
    Zeng, Jianyang
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2014, 2014, : 148 - 159
  • [36] DTI-MACF: Drug-Target Interaction Prediction via Multi-component Attention Network
    Deng, Jiejin
    Zhang, Yijia
    Zhang, Jing
    Pan, Yaohua
    Lu, Mingyu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 639 - 650
  • [37] DeepNC: a framework for drug-target interaction prediction with graph neural networks
    Tran, Huu Ngoc Tran
    Thomas, J. Joshua
    Malim, Nurul Hashimah Ahamed Hassain
    PEERJ, 2022, 10
  • [38] Drug-target interaction prediction from PSSM based evolutionary information
    Mousavian, Zaynab
    Khakabimamaghani, Sahand
    Kavousi, Kaveh
    Masoudi-Nejad, Ali
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2016, 78 : 42 - 51
  • [39] DRUG-TARGET INDICATION PREDICTION BY INTEGRATING END-TO-END LEARNING AND FINGERPRINTS
    Agyemang, Brighter
    Wu, Wei-Ping
    Kpiebaareh, Michael Y.
    Nanor, Ebenezer
    2019 16TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICWAMTIP), 2019, : 266 - 272
  • [40] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326