Drug-target interaction prediction by integrating heterogeneous information with mutual attention network

被引:2
|
作者
Zhang, Yuanyuan [1 ]
Wang, Yingdong [1 ]
Wu, Chaoyong [2 ]
Zhan, Lingmin [1 ]
Wang, Aoyi [1 ]
Cheng, Caiping [1 ]
Zhao, Jinzhong [1 ]
Zhang, Wuxia [1 ]
Chen, Jianxin [2 ]
Li, Peng [1 ]
机构
[1] Shanxi Agr Univ, Coll Basic Sci, Shanxi Key Lab Modernizat TCVM, Jinzhong 030801, Peoples R China
[2] Beijing Univ Chinese Med, Sch Tradit Chinese Med, Beijing 100029, Peoples R China
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
关键词
Drug-target interaction; Drug discovery; Heterogeneous network; Self-attention; Deep learning; IDENTIFICATION; KNOWLEDGEBASE;
D O I
10.1186/s12859-024-05976-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundIdentification of drug-target interactions is an indispensable part of drug discovery. While conventional shallow machine learning and recent deep learning methods based on chemogenomic properties of drugs and target proteins have pushed this prediction performance improvement to a new level, these methods are still difficult to adapt to novel structures. Alternatively, large-scale biological and pharmacological data provide new ways to accelerate drug-target interaction prediction.MethodsHere, we propose DrugMAN, a deep learning model for predicting drug-target interaction by integrating multiplex heterogeneous functional networks with a mutual attention network (MAN). DrugMAN uses a graph attention network-based integration algorithm to learn network-specific low-dimensional features for drugs and target proteins by integrating four drug networks and seven gene/protein networks collected by a certain screening conditions, respectively. DrugMAN then captures interaction information between drug and target representations by a mutual attention network to improve drug-target prediction.ResultsDrugMAN achieved the best performance compared with cheminformation-based methods SVM, RF, DeepPurpose and network-based deep learing methods DTINet and NeoDT in four different scenarios, especially in real-world scenarios. Compared with SVM, RF, deepurpose, DTINet, and NeoDT, DrugMAN showed the smallest decrease in AUROC, AUPRC, and F1-Score from warm-start to Both-cold scenarios. This result is attributed to DrugMAN's learning from heterogeneous data and indicates that DrugMAN has a good generalization ability. Taking together, DrugMAN spotlights heterogeneous information to mine drug-target interactions and can be a powerful tool for drug discovery and drug repurposing.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A heterogeneous graph neural network with automatic discovery of effective metapaths for drug-target interaction prediction
    Zhang, Menglong
    Hong, Yue
    Shen, Lian
    Xu, Shiyu
    Xu, Yanni
    Zhang, Xinyi
    Liu, Juan
    Liu, Xiangrong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 283 - 294
  • [22] Drug-target interaction prediction using Edge2vec Algorithm on the heterogeneous network via SVM
    Fattahi, Fatemeh
    Refahi, Mohammad S.
    Minaei-Bidgoli, Behrouz
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [23] Improved drug-target interaction prediction with intermolecular graph transformer
    Liu, Siyuan
    Wang, Yusong
    Deng, Yifan
    He, Liang
    Shao, Bin
    Yin, Jian
    Zheng, Nanning
    Liu, Tie-Yan
    Wang, Tong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [24] CSDTI: an interpretable cross-attention network with GNN-based drug molecule aggregation for drug-target interaction prediction
    Yaohua Pan
    Yijia Zhang
    Jing Zhang
    Mingyu Lu
    Applied Intelligence, 2023, 53 : 27177 - 27190
  • [25] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [26] Drug-Target Interaction Prediction Based on an Interactive Inference Network
    Chen, Yuqi
    Liang, Xiaomin
    Du, Wei
    Liang, Yanchun
    Wong, Garry
    Chen, Liang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [27] Some Remarks on Prediction of Drug-Target Interaction with Network Models
    Zhang, Shao-Wu
    Yan, Xiao-Ying
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (21) : 2456 - 2468
  • [28] Multi-view self-attention for interpretable drug-target interaction prediction
    Agyemang, Brighter
    Wu, Wei-Ping
    Kpiebaareh, Michael Yelpengne
    Lei, Zhihua
    Nanor, Ebenezer
    Chen, Lei
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 110
  • [29] Deep drug-target binding affinity prediction with multiple attention blocks
    Zeng, Yuni
    Chen, Xiangru
    Luo, Yujie
    Li, Xuedong
    Peng, Dezhong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [30] Drug-Target Prediction Based on Dynamic Heterogeneous Graph Convolutional Network
    Xu, Peng
    Wei, Zhitao
    Li, Chuchu
    Yuan, Jiaqi
    Liu, Zaiyi
    Liu, Wenbin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6997 - 7005